
D/2005/6482/9

Vlerick Leuven Gent Working Paper Series 2004/9

ON THE MORPHOLOGICAL STRUCTURE OF A NETW ORK

MARIO VANHOUCKE

Mario.Vanhoucke@vlerick.be

JOSÉ COELHO

DIETER DEBELS

LUÍS V. TAVARES

2

ON THE MORPHOLOGICAL STRUCTURE OF A NETW ORK

MARIO VANHOUCKE

Vlerick Leuven Gent Management School

JOSÉ COELHO

CESUR, Instituto Superior Tecnico, Technical University of Lisbon and

DCET, Universidade Aberta, Rua da Escola Politécnica

DIETER DEBELS

Faculty of Economics and Business Administration, Ghent University

LUÍS V. TAVARES

CESUR, Instituto Superior Tecnico, Technical University of Lisbon

Contact:

Mario Vanhoucke

Vlerick Leuven Gent Management School

Tel: +32 09 210 97 81

Fax: +32 09 210 97 00

Email: Mario.Vanhoucke@vlerick.be

3

ABSTRACT

In literature, both topological and resource-related measures are used to predict the difficulty

of a project scheduling problem. Rapid progress regarding solution procedures has resulted in

the development of a number of data generators in order to generate instances under a

controlled design and in different standard sets with problem instances. These complexity

measures need to serve as predictors for the complexity of the problem under study.

In this paper, we report on results for the topological structure of a network. The contribution

of this paper is threefold. First, we review six topological network indicators in order to

describe the structure of a network in a detailed way. These indicators were originally

developed by [20] and have been modified or sometimes completely replaced by alternative

indicators in order to give a better description of the topology of a network. Secondly, we

generate a large amount of different networks with four network generators. This allows us to

draw conclusions on both the performance of different network generators and to give a

critical remark on well-known datasets from literature. Our general conclusions are that none

of the network generators are able to capture the complete feasible domain of all networks.

Moreover, each network generator covers its own network-specific domain and, consequently,

contributes to the generation of instance data sets. Finally, we perform computational results

on the well-known resource-constrained project scheduling problem to proof that our

indicators are reliable and have significant predictive power to serve as complexity indicators.

Keywords: Networks; Topological structure; Graphs; Project Scheduling instances.

4

1 INTRODUCTION

Researchers in the area of Operations Research and project scheduling have used

activity networks to visualize different kinds of projects. Due to the rapid progress regarding

exact and heuristic procedures, they have paid a lot of attention to the description of the

topological structure of a network. In doing so, they try to predict the difficulty of a particular

problem for a particular solution procedure based on the structure of the network. Therefore,

different sets with topological indicators that can discriminate between easy and hard

instances and that can act as predictors of the computational effort of the procedures have

been developed. The CPU-time that a solution procedure needs to solve a particular problem

instance to optimality can typically be used to describe the hardness of this problem instance

for the particular solution procedure. Hence, the comparison of procedures and good

predictions of their required CPU-time allow the a priori selection of the fastest solution

procedure, based on the simple calculation of the topological indicators.

Quite a number of complexity measures have been proposed in the literature. [9] call

the attention to problem instances that span the full range of problem complexity. [10] have

shown the occurrence of phase transitions in project scheduling problems and call the

attention to the importance of measures with sufficient discriminatory power to allow for the

observation of these dramatic changes in problem difficulty. These authors distinguish

between measures capturing information about the size and the topological structure of the

network and measures which are related to the different resources allocated to the project.

For an overview of previous research in complexity measures and their link with

existing network generators, we refer to [7]. In their paper, the authors describe three

important complexity measures that are used to describe the topological structure of a

network, i.e. the coefficient of network complexity (CNC, see [3], [4], [11], [12] and [18]), the

order strength (OS, see [2], [10], [13], [16], [19] and [21]) and the complexity index (CI, see

[1]). During the development of efficient solution procedures, many researchers have relied

on data instances with one of these complexity measures. [7] also provide a critical discussion

of the different network generators that are available to the researchers in order to generate the

data instances. In this paper, we will use RanGen [7], ProGen [15] and RiskNet [19] for our

computational results section, as well as the well-known testset PSPLIB [14]. In the remainder

of this paper, we refer to the original RanGen network generator as RanGen1. Moreover, we

report on results of a modified version of RanGen by taking new topological indicators into

5

account (referred to as RanGen2) that are based on improved definitions of the indicators

presented in [20]. The description of these indicators is the subject of section 2.

In this paper, we focus on the topological structure of an activity-on-the-node network

in order to compare well-known network generators from literature. The organization of the

paper is as follows. In section 2 we present the six network-based indicators that describe the

topological structure of any network in detail and are partly improved versions of the

indicators presented in [20]. Section 3 describes the generation process of RanGen2 which

takes these new indicators into account. Section 4 is reserved for a detailed description of the

structure of a network based on a simulation with the four aforementioned network

generators. We show that RanGen2 is able to generate networks with a wide variety of

topological measures. Moreover, we test the influence of the topological indicators on the

well-known resource-constrained project scheduling problem and show that the indicators can

serve as complexity predictors. Section 5 provides a summary, overall conclusions and areas

for future research topics.

2 THE TOPOLOGICAL INDICATORS

In this section we present six complexity measures that describe the topological

structure of a network, based on the indicators proposed by [20]. More precisely, the I1, I2 and

I4 indicators are exact copies from the original paper, while indicators I3 and I5 are improved

versions of their corresponding original versions. Indicator I6 is completely new and does not

appear in [20]. All these indicators (except the first one) have a value in the [0,1]-interval.

Each indicator measures a specific characteristic of the topological structure of a network and

will be discussed in following subsections.

In the remainder of this paper, a network consists of a set of nodes N and a set of arcs

A. The nodes are numbered from the first node 1 to the last node n. The arcs are used to

impose precedence relations between the nodes as follows: we use the set Pi (Si) to denote the

set of immediate predecessor nodes (successor nodes) of node i linked by means of an arc.

The sets P’ i and S’i are used to denote the set of all nodes that precede (succeed) node i linked

by means of a path in the network. When we use an activity-on-the-node (AoN) network, the

nodes represent activities and the arcs represent technological precedence constraints. In order

to be in line with literature, a project network can be extended with a dummy start node 0 and

a dummy end node n + 1.

6

Some indicators rely on the progressive level PLi and regressive level RLi for each

activity i ∈ N. These concepts have been introduced by [8] and are defined as follows:







∅≠+
∅=

=
∈ ij

Pj

i

i PPL

P
PL

i

if1max

if1

and







∅≠−
∅=

=
∈ ij

Sj

i

i SRL

Sm
RL

i

if1min

if

with m the maximal progressive level, i.e. i
Ni

PLm
∈

= max .

2.1 Indicator I1 – size of problem

The first indicator of [20] measures the size of the network as the number of activities

and equals I1 = number of activities = n.

2.2 Indicator I2 – serial or parallel indicator

Indicator I2 ∈ [0, 1] measures the closeness of a network to a serial or parallel graph

for activity-on-the-node networks based on the number of progressive levels m. Indicator I2 is

defined as follows:








>
−
−

=
=

1if
1

1

1if1

2
n

n

m

n
I

For a network with all activities in series, m = n and I2 = 1. When all activities are in

parallel then m = 1 and, consequently, I2 = 0.

2.3 Indicator I3 - activity distribution

[20] introduced the width wa of each progressive level a = 1, …, m as the number of

activities at that level. Based on wa, they defined I3 as a vector w that contains the width of

each progressive level. In order to be in line with the other indicators presented in this paper,

we define I3 ∈ [0, 1] as follows:

7













∉
−−

−
=

∈

= ∑
= },1{if

)1)(1(2

},1{if0

1

max

3

nm
wm

ww

nm

I
m

a
a

w

α
α

This indicator measures the distribution of the activities over the progressive levels by

calculating the total absolute deviations wα and maxα . wα measures the total absolute

deviation of the activity distribution w = (w1, w2, …, wm) from the average deviationw = n / m

as follows:

1

m

w a
a

w wα
=

= −∑ .

maxα determines the maximal value of wα for a network with n activities and m

progressive levels. maxα corresponds to a network for which m - 1 progressive levels have a

width wa of 1, and one progressive level has a width wa of n - (m - 1). The value of maxα can be

calculated as follows:

max (1)(1) (1)m w n m wα = − − + − + − .

The first term calculates the absolute deviation between wa = 1 and the average width

w for m – 1 progressive levels. The second term calculates the difference between wa = n - (m

- 1) and w for the remaining progressive level. The formula for m 1≠ can be simplified to

maxα =2(1)(1)m w− − , resulting in the I3 indicator defined above. This indicator equals 1

when wα = maxα . At the other extreme, the indicator has a value of 0 when the activities are

uniformly distributed over the progressive levels, i.e. wa = w = n / m (for a = 1, …, m).

2.4 Indicator I4 - short arcs

The length of an arc (i, j) can be defined as the difference between the progressive

level of the end node j and the start node i, i.e. PLj – PLi. Consequently, the maximal length of

an arc equals m – 1. We define the number of arcs in the network with length l as n’ l = #{(i, j)

∈ A| PLj – PLi = l}, with 1 ≤ l ≤ m - 1. Based on this parameter, the indicator I4 ∈ [0, 1]

measures the presence of short arcs (i.e. with a length l = 1) and can be defined as follows:

8









−>
+−
+−

−=
=

1
1

11

1

4 if
'

if1

wnD
wnD

wnn

wnD

I

where D represents the maximal number of short (l = 1) arcs in a network, given the

width of each level, i.e. ∑
−

=
+=

1

1
1*

m

a
aa wwD .

2.5 Indicator I5 - long arcs

Indicator I5 ∈ [0,1] is based on the same parameter n’ l , but takes - in contrast to I4 -

also the long arcs (i.e. l > 1) into account. The indicator is defined as follows:













−>
+−

+−+









−
−−

−=

= ∑
−

=
1

1

11

1

2

1

5

if

'
2

1
'

if1

wnA
wnA

wnn
m

lm
n

wnA

I
m

l
l

|A| represents the total number of arcs, and equals ∑
−

=

1

1

'
m

l
ln . The value of this I5 can

only be 1 if all the arcs have a length l = 1. Dependent on the number of long arcs and the

exact length of these arcs, I5 will have a value closer to 0.

2.6 Indicator I6 - topological float

This indicator takes the topological float of each activity into account and has not been

incorporated in [20]. The topological float of activity i is defined as the difference between its

regressive and progressive level, i.e. RLi - PLi. Based on this parameter, indicator I6 ∈ [0, 1] is

defined as follows:













∉
−−

−

∈

= ∑
= },1{if

))(1(

)(

},1{if0

1
6

nm
mnm

PLRL

nm

I
n

i
ii

9

The value of I6 will be zero if none of the activities has a topological float > 0. At the

other extreme, I6 will be equal to 1 for a network with mserial activities with zero topological

float and the remaining n - m activities without precedence relations (i.e. with a topological

float of m - 1).

An illustrative Example

In figure 1, we displayed a network with 10 activities and 2 dummy activities. The

values for the different indicators are calculated below.

Insert Figure 1 About Here

In table 1 we report the values for the progressive and regressive level for each

activity. Based on this information, we can calculate the values for all indicators. In this

example, we have n = 10, m = 4, w1 = 3, w2 = 5, w3 = 1, w4 = 1, n’1 = 8, n’2 = 4, n’3 = 1 and

consequently D = 3 * 5 + 5 * 1 + 1 * 1 = 21.

Insert Table 1 About Here

The values for the indicators of sections 2 can now be calculated by filling in all the

needed parameters. In doing so, we obtain

I1 = 10, 33.0
110

14
2 =

−
−=I , 3

10 10 10 10
3 5 1 1

4 4 4 4 0.67
10

2*(4 1) * (1)
4

I
− + − + − + −

= =
− −

,

07.0
31021

3108
4 =

+−
+−=I , 5

2 3 3 3
*4 *1 8 10 3

2 4 2 4 0.50
8 4 1 10 3

I

− −+ + − +
− −= =

+ + − +
, 6

8
0.44

3*6
I = = .

10

3 NETWORK GENERATION PROCESS: RANGEN1 AND RANGEN2

In section 3.1 we briefly review the generation process of RanGen1. In section 3.2, we

present the logic behind RanGen2 which is an enhanced version of RanGen1 and takes the six

new indicators of section 2 into account.

3.1 The generation scheme of RanGen1

The networks in RanGen1 are represented by a strictly upper triangular precedence

relations matrix. This binary precedence matrix PM denotes whether or not a precedence

relation exists between two nodes. The matrix can be defined as follows:






⇒∉

⇒∈
=

0'

1'

j

j

ij Pi

Pi
PM ,

and is illustrated by the network as given in figure 2. Notice that we add a dummy start

activity s and a dummy end activity t to visualize the network but we do not incorporate these

in the precedence matrix PM.

Insert Figure 2 About Here

The generation process of a network in RanGen1 with pre-specified OS-value boils

down to the deletion of arcs. Indeed, the generator starts for each generation with a completely

connected network for which OS = 1 and removes arcs until it obtains a network with the pre-

specified order strength. The set of arcs is updated each time an arc has been removed. Due to

this simple logic, RanGen1 guarantees to find a network with a given value for the order

strength OS.

Since the removal of arcs can lead to networks with a different precedence matrix PM

but with a similar topological structure, each network must be checked for uniqueness by the

recursive enumeration procedure described in [7]. If the network has not yet been generated, it

is added to the set of generated networks GN (initially GN = ∅). RanGen1 continues this way

until a pre-defined number of networks has been generated or until a certain time limit has

been reached.

11

3.2 The generation scheme of RanGen2

The generation process of RanGen1 is completely determined by pre-specified values

for I1 and OS. RanGen2 relies on the same basic logic of removing arcs, but aims at

generating networks with pre-specified values for I1 and I2. Consequently, the generator

removes arcs until it obtains a network with a pre-specified I2-value. However, RanGen2

distinguishes from RanGen1 in two basic characteristics: the start network at each generation

run and the number of networks per run.

A first fundamental difference is the start network at each generation run. While

RanGen1 starts with a unique serial network with OS = 1, RanGen2 starts from a larger pool

of possible networks. More precisely, RanGen2 starts with a network for which the I2 is

randomly chosen from the interval ['2I , 1], with '
2I the pre-specified value for I2 and an I3-

value randomly chosen from the interval [0, 1]. The start values of all other indicators equal I4

= I5 = 1 and I6 = 0. In doing so, we start from a larger pool of possible start networks, and

hence more different network with pre-defined indicator values can be generated.

A second difference lies in the number of networks generated per run. RanGen1

removes arcs from a network until a pre-specified OS-value is obtained. RanGen2 removes, in

a similar way, arcs from a network until a pre-specified I2-value is reached. From this point

onwards, RanGen2 continues with the removal of arcs. Indeed, further removals might be

possible without decreasing the value of I2. This process continues until no arc can be deleted

without decreasing I2. Thus, while for RanGen1 exactly one network is generated per run, a

set of networks are generated in each run with RanGen2 with pre-specified values for I1 and I2

but with a different topological structure (i.e. other values for I3, I4, I5, and I6). Consider, as an

example, the network of figure 2 for which OS = 0.5 and I2 = 0.5. RanGen1 stops with

removing arcs since otherwise the OS-value would decrease. RanGen2, however, can continue

since removing certain arcs can lead to networks with the same value I2 = 0.5. In figure 3, we

have removed arc (2, 3) from the precedence matrix such that OS = 0.4 and I2 = 0.5. These

two networks (figures 2 and 3) are saved by RanGen2, since they both meet the condition I2 =

0.5. At that point, RanGen2 stops with the removal of arcs, since this would lead to OS = 0.3

and I2 = 0.25.

Insert Figure 3 About Here

12

After the generation of each network, RanGen2 checks whether the network has a

different topological structure than previous generated networks by means of the recursive

search procedure of [7]. The pseudo-code to generate a set of activity-on-the-node networks

GN that meet pre-specified values '
1I and '

2I can be described as given below. Note that for

each generation run, more than one activity network AN can be generated as explained

previously in this section.

procedure generate('
1I , '

2I);

GN = ∅;
AN = activity network with n = '

1I and I2 ∈ ['
2I , 1], I3 ∈ [0, 1], I4 = I5 = 1

and I6 = 0;
REPEAT

REPEAT

 arc = select_arc(AN);
 AN = remove_arc(AN, arc);
 Unique_representation(AN);
 If (AN ∉ GN) then save the network: GN = GN ∪ AN;
 Until I2 = '

2I ;
 Repeat
 arc = find_removable_arc_without_changing_I2(AN);
 AN = remove_arc(AN, arc);
 Unique_representation(AN);
 If (AN ∉ GN) then save the network: GN = GN ∪ AN;
 Until arc = 0;
Until #GN ≥ pre-specified number of generated networks
Return;

This generation process used for RanGen2 has been programmed in Borland C++,

version 4.0, and can be downloaded at http://www.projectmanagement.UGent.be. Since the

generator generates many networks in a small time limit and it calculates and stores the I3, I4,

I5 and I6 values each time a new network has been generated, the user is able to generate

networks with a pre-specified value for all indicators I1 to I6.

4 EXPERIMENTAL DESIGN - RELATIONS BETWEEN INDICATOR S

In this section, we present results for the relations between the indicators as well as

results for network generators. We also use the well-known PSPLIB dataset for comparison

purposes. The generation of networks has been divided in three main parts. In subsection 4.1,

13

we display the results of an exhaustive generation of all 10-activity networks. In doing so, we

are able to present computational results that do not depend on the performance of network

generators. In subsection 4.2, we discuss the settings and results of our computational tests

and generate networks of 30 activities with four different network generators. Although we

are not able to generate all possible networks of that size, the tests allow us to compare the

performance of these network generators by means of the indicators presented in this paper.

The results of this test are presented in section 4.3. In section 4.4, we report computational

results for the well-known resource-constrained project scheduling problem and show that our

indicators can be used as complexity indicators. For all our tests, we used a Toshiba personal

computer with a Pentium IV 2 GHz processor and 512 MB Ram under a Windows XP

operating system.

4.1 The exhaustive generation of all 10-activity networks

A network generator can be called strongly random if it is able to generate networks at

random from the space of all feasible networks with a specified number of nodes and arcs [5].

[7] argued that the generation of strongly random networks could be possible by enumerating

all possible network structures which satisfy preset values of the complexity parameters and

by randomly selecting a subset of networks afterwards.. Due to CPU-time and memory

restrictions, however, this method is only applicable for networks with a small amount of

activities. In this subsection, we generate all networks with 10 activities and display some

interesting results in table 2.

Insert Table 2 About Here

The table reveals that there exist 2,567,284 networks with 10 activities and with a

different topological structure. Rows 2 to 7 display the number of settings for different

indicators. Since we generate all 10-activity networks, the maximum number of precedence

relations equals (10 * 9) / 2 = 45. Consequently, we have 46 settings for the OS, varying from

0 to 1 in steps of 1 / 45. This means that, on the average, 2,567,284 / 46 = 55,810.52 networks

exist per setting. As shown in [7], there are many more networks with an OS-value of 0.5

than, for example, an OS-value of 0.20. Since I2 has been defined as
1

1

−
−

n

m
 (with n = I1 = 10),

14

we have 10 settings for the I2 indicator, varying from 0 to 1 in steps of 1 / 9. The number of

settings for indicators I3, I4, I5 and I6 is somewhat more confounding. To that purpose, we

have calculated the values for these indicators with two decimal places. In doing so, we have

101 settings, varying from 0 to 1 in steps of 0.01.

The last row displays the number of networks with different values for the I2 to I6

indicators. To that purpose, we have created a matrix of size 10 * 1014 according to the

different settings as described before (10 settings for I2 and 101 settings for I3 to I6). During

the complete enumeration, we check whether a network with different values for the I2, I3, I4,

I5 and I6 indicators has been found. The total number of networks with a unique I2 to I6

combination equals 48,982.

In table 3, we display the correlation matrix for the OS and the indicators I2, I3, I4, I5

and I6. As an example, the correlation coefficient
2,IOSr = 0.70 is intuitively clear. The more

levels (m) a network has, the larger the I2-value and the more precedence relations a network

can have (which results in a larger OS-value). The correlation
54 ,IIr = 0.67 is also

straightforward, since both I4 and I5 are constructed to measure the ‘length’ of the arcs in a

network. All the other correlation coefficients are lower than 0.5, as displayed in the table.

Insert Table 3 About Here

Note that the results of this subsection are based upon the complete enumeration of all

existing networks with 10 activities. The number of networks with different topological

structure with 11 activities is equal to 46,749,566. We were not able to determine the number

of networks with 12 activities, due to CPU-time and memory restrictions. In the next section,

we generate networks with 30 activities by means of different network generators. Since it is

impossible to generate all networks, we use two stop criteria as described in the following

section.

4.2 Comparison of network generators

In this section we generate a large number of networks with different values for the

indicators. This experiment allows the comparison of different network generators from

literature. Moreover, it serves as an illustration of the relations and dependencies of the

different indicators. In all experiments, we have chosen to set I1 = 30 in order to compare it

15

with the PSPLIB instances ([14]) with 30 activities. Similar results have been found with the

60, 90 and 120 instances. Our tests are based on the use of four network generators, i.e.

RanGen1, RanGen2, ProGen and RiskNet. In order to have a fair comparison between

network generators, we try to cover the whole domain of feasible networks as much as

possible by exploiting specific information about the input parameters of each generator.

RanGen1 generates network instances with given values for both I1 and OS. Since, in

our experiments, n = I1 = 30, the maximal number of arcs equals (30 * 29) / 2 = 435. In order

to cover the whole domain specified by the OS, we vary this measure in steps of 1 / 435. In

doing so, we have 436 settings, starting from a parallel network (OS = 0) and ending with a

serial network (OS = 1), by allowing one extra arc at the time per setting. Note that, because

of the simple logic of the generation process, each network can be generated in a very small

amount of time.

RanGen2 generates network instances with given values for both I1 and I2. Since I2 has

been defined as
1

1

−
−

n

m
, n = I1 = 30 and since we want to follow a similar reasoning as for the

RanGen1 instances, we need to use 30 settings. Therefore, we fix the values for I2 from 0 to 1

in steps of 1 / 29 in order to generate networks with all possible values of I2.

For the generation of networks with ProGen, we relied on the source code to generate

a large number of networks. The input values for this generator are the coefficient of network

complexity, the maximal number of successor activities and the maximal number of starting

and ending activities of the project. The CNC is defined as the number of arcs divided by the

number of nodes in the network. The minimal CNC-value equals 0 and corresponds to a

parallel network. The maximal CNC-value for a network with I1 = 30 is 7.5. This corresponds

to a two-level (m = 2) network with 15 activities on each level for which all activities of level

1 are predecessors of all the activities of the second level. In order to guarantee that every

possible network can be generated, we use – in similarity to the previous network generators –

226 settings for the CNC, ranging from 0 to 7.5, in steps of 1 / 30. All other input parameters

(such as the number of successor and predecessors per activity and the maximal number of

start and end activities) have been chosen randomly such that they do not restrict the feasible

domain of networks.

In order to generate networks with RiskNet we need to control 3 input parameters. The

value for the first indicator, I1, equals 30. The values for the second indicator, I2, are similar to

the settings of the RanGen2 test instances (30 settings). The third input parameter is equal to

I4 as described in this paper. Since this indicator measures the number of ‘short’ arcs, and it

16

equals 0 when there is no such relations and it equals 1 when there are D such relations. D

equals ∑
−

=
+

1

1
1*

m

a
aa ww and depends on the value of I3. However, the maximal value for D,

regardless of the I3-value, equals 225 as described previously. Consequently, we use 226

settings for the I4 indicator, ranging from 0 to 1, in steps of 1 / 225.

In the next section, we discuss the results of the computational tests and display them

in a graphical way (see the scatter plots in the appendix). In order to have a fair comparison

between network generators, it is necessary to generate as many networks as possible. To that

purpose, we apply a stop criterion for each setting (and consequently, continue then with the

next setting) if the generation run of networks exceed one of the following criteria:

(i) Maximum allowable CPU-time of 1 network of 100 seconds. Exceeding this

time limit indicates that no network with the given input parameters can be found by

the network generator under study. Note that this will only occur for the RiskNet and

ProGen generator. RanGen1 and RanGen2 always assure the existence of a network

with the given input parameter in a very small amount of CPU-time.

(ii) Maximum 1,000 consecutive generations without finding a new network. This

means that the network generator is not able to find a new network which has not been

generated previously. Due to memory restrictions, we define a new network as a

network for which no similar I2 to I6 combination has been found. Note that we could

also have used the recursive search procedure of [7], but this would lead to too many

networks with a different topological structure but identical I2 to I6 combinations.

For each setting, we generate the network instances according to the input parameters

described in this section and, afterwards, we calculate the values for all the other indicators.

4.3 Experimental results

As mentioned in previous section, we note that we have defined a ‘new’ network as a

network with a different I2 to I6 combination than a previously found network. To that

purpose, we have created a matrix of size 30 * 1014 and indicated whether a network has been

found for each field of this matrix. This is exactly the same approach that we have taken in

generating all 10-activity networks (48,982 ‘new’ networks versus the 2,567,284 found

17

networks). Consequently, if we refer to the number of new networks found, we refer to

networks with different I2 to I6 combinations.

Table 4 presents the results of our computational tests for the four different network

generators. The total number of new networks found equals 19,105,294. The different rows

contain the number of new networks found by a combination of network generators. As an

example, 450,593 networks were found by RanGen1 which were not found by any other

network generator. 1,272,039 networks were found by RanGen1 and RanGen2 which were

not found by RiskNet or ProGen. The row “Total” contains the total number of new networks

found per network generator, and the row “% Total” expresses this number as a percentage of

the total number of new networks found by all generators, i.e. % Total = Total / 19,105,294.

The next two rows give an indication of the amount of new networks that were found by only

one network generator. The row “% New – Generator” expresses this number as a percentage

of the total amount of new networks found by the generator. The row “% New – Total”

expresses this number as a percentage of the total amount of new networks found.

Insert Table 4 About Here

The table reveals that RanGen2 outperforms all other network generators in the total

amount of networks generated. Indeed, somewhat more than 60 % of the networks were found

by RanGen2. ProGen is also able to generate a large set of the total amount of networks

(48.98 %). RanGen1 and RiskNet show a very poor performance since they can both generate

only a small subset of all generated networks (22.06 % and 11.50 %, respectively). The total

running time to generate all these networks amounted to about 10 hours for RanGen1, 18

hours for RanGen2, 2 days for RiskNet and about 2 weeks for ProGen.

Although an evaluation of different network generators may lead to interesting

conclusions, our ultimate purpose is not to compare the network generators as such, but rather

to show that improvements can be made by combining the use of different generators. This

information can be found in the rows “% New – Generator” and “% New – Total”. One the

one hand, these rows reveal that, despite its poor performance on the total amount of new

networks, RiskNet is able to generate a large set of networks that were not found by any other

generator. Indeed, almost 78 % of the networks found by RiskNet were not found by any other

network generator. However, this fraction counts only for 8.97 % of the total amount of

networks found. RanGen1, on the other hand, is only able to provide 2.36 % new networks

18

that were not found by any other network generator, and thus does not contribute much to the

total set of 19,105,294 networks. RanGen2 and ProGen both have a high contribution to the

total amount of networks generated. Approximately 50% of the networks found by both

generators were completely new. Almost 32 % of all the networks have only been generated

by RanGen2 and almost 25 % of all the networks have only been generated by ProGen. This

information has been summarized in figure 4 for RanGen2, ProGen and RiskNet. Due to the

low contribution of RanGen1, we have deleted this network generator in this figure.

Insert Figure 4 About Here

This picture clearly illustrates the advantage of the combination of different network

generators. All network generators were able to generate a large amount of networks that were

not found by any other. The intersection of different network generators contains a relatively

small amount of networks, and only 40,382 similar new networks were found by the three

network generators.

In the appendix, all pairs of indicators have been displayed by two-dimensional

scatterplots. These graphical pictures allow a quick comparison of network generators and

provide insight into the relations – albeit in only two dimensions – between the indicators. In

order to have a complete overview, the results for the PSPLIB instances have also been

displayed. These graphs must be interpreted from a ‘strongly randomness’ point of view. If

the generated networks only cover a small portion of this whole domain, only a very small

amount of possible networks can be generated and the network generator fails to be ‘as

strongly random as possible’. Therefore, the better the scatterplots cover the domain, the

better the network generator is.

The plots indicate that RanGen2 clearly outperforms RanGen1 since all areas

generated by the last generator have also been generated by the first one. The RanGen1

procedure starts with a serial network and removes arcs until it obtains a network with the pre-

specified order strength. It has been mentioned by [7] that some networks have only one

representation in the PM while others have many. Although each possible network can be

theoretically generated, the probability of a network to be generated is heavily related to its

corresponding number of representations in the PM. Some networks have many different

representations, while others have only one and thus are very unlikely to be generated by

Rangen1. Rangen2 tries to overcome this problem by starting with a generated network with a

19

randomly selected I3 value. In doing so, RanGen2 starts from a larger pool of possible

networks, and hence, more different networks can be generated.

The scatterplots reveal that RiskNet performs reasonably well and generates networks

from almost the same space than RanGen2. This network generator uses I2 and I4 as input

values for the generation process, and hence shows the good performance from a two-

dimensional point. However, in the previous section, we illustrated that the generator is not

able to generate a lot of different networks.

ProGen outperforms RiskNet and RanGen1 in the number of different networks, but

performs less in generating networks from the feasible domain, as illustrated in a number of

graphs (see e.g. I2 vs. I4, I2 vs. I5 or I2 vs. I6). As an example, ProGen fails in producing

networks with high I2-values (see the scatterplots of the appendix). These long serial chains of

activities are hard to generate, due to the specific generation process of ProGen and the extra

input parameters, such as the maximal number of successor activities. The process assigns

predecessors to each activity (see step 2 of [15]) which results in a tree structure when the

maximal number of successors exceed the value of 1. Hence, a final network structure with a

high I2-value is quite unlikely. Only when the maximal number of successor activities is set to

one, a limited number of networks with a high I2-value will be generated.

Remark that the results are sometimes misleading due to the settings of our

experiment. The ‘I2 vs I5’ plot, for example, shows vertical lines for almost all values for I2.

The reason is that we only have generated networks with I2-values in 30 discrete steps. This

graph must therefore be seen as a black picture, covering the domain of feasible networks,

since intermediate areas do not exist. Note that the J30 set only covers a very limited space,

while RanGen1, RanGen2, ProGen and RiskNet are able to generate networks from a wider

part of all the feasible networks. Of course, PSPLIB contains only a small fraction of the

networks generated by the network generators, and therefore, the comparison serves only for

illustrative purposes.

4.4 The predictive power of the indicators

Although the aim of our paper is to investigate network generators and detect possible

improvements, it is interesting to give a first impression of the predictive power of the

indicators presented in section 2. More precisely, we give preliminary results that the

proposed indicators have discriminatory power to predict between easy and hard instances for

a particular algorithm and hence, allow the a-priori selection of the fastest solution procedure

20

for a problem instance. To that purpose, we have generated 10 classes of network instances,

each containing 100 instances, with indicator values as given in table 5. We extended each

network instance with 4 renewable resources with a resource-constrainedness (see [17]) of 0.4

and a resource use [7] of 0.75.

Insert Table 5 About Here

We have used these networks as resource-constrained project scheduling problem

instances (RCPSP), that can be solved to optimality by the procedure of [6]. The number of

created nodes in this branch-and-bound procedure used to solve these instances to optimality

is given per class in figure 5. The number of created nodes can be used as a measure to predict

the problem instance complexity for the branch-and-bound procedure used.

Insert Figure 5 About Here

This figure reveals that instances within a class are rather homogeneous with respect to

the number of created nodes, while the number varies drastically between different classes.

This gives a first indication of the predictive power of our indicators, and hence they might

serve as a predictor for problem instance complexity and the a-priori selection of the fastest

procedure. Furthermore, it indicates that networks within one class are rather similar while

network instances between classes show significant difference. Consequently, a combination

of I1 to I6 values can be used to predict the behaviour of a solution procedure.

5 CONCLUSIONS

In this paper we discussed six indicators that describe the topological structure of a

network into detail. Some of these indicators are improved versions of the [20] indicators.

These network-based indicators have been used to modify and enhance the generation process

of a network generator RanGen1 [7].

The experimental section consists of three main parts. In a first section, we displayed

the results of the generation of all 10-activity networks and reported some interesting results.

In a second section, we have generated a large set of networks in order to have an overview of

the relation between the indicators and to compare the performance of different network

21

generators. To that purpose, we rely on the generation technique of the original network

generator (RanGen1) and on the newly presented technique in this paper (RanGen2). We also

included networks generated by ProGen and RiskNet, and we compared our nets and

associated indicators with the PSPLIB library. In a last section, we show that our indicators

are reliable to predict problem instance complexity by reporting results on the resource-

constrained project scheduling problem. We show that the variance between networks within

one [I2 to I6] vector is rather low, while networks between classes show a significant variance

with respect to the number of created nodes to solve the problem instances to optimality.

Our future intentions are twofold. First, we want to create a benchmark dataset to use

for further research in the project scheduling community. Therefore, we can rely on the

experimental research of this paper, that illustrates that a combination of different network

generators is necessary during the generation process. Moreover, the PSPLIB results show

that these network instances only represent a small portion of the feasible domain and,

consequently, more networks are needed. A second topic of future research lies in a

benchmark comparison of different existing procedures by using networks generated by our

new procedure. In doing so, we can detect whether the topological indicators reveal some

phase transitions for certain problem types. We are convinced that this benchmark comparison

opens new insights into the understanding and predictive power of the complexity of existing

and new algorithms.

ACKNOWLEDGEMENTS

The network generator ProGen can be downloaded at

http://www.bwl.uni-kiel.de/Prod/psplib/progen/progen-sfx.exe

The network generator RiskNet can be downloaded at

http://jcoelho.m6.net/freeware/risknet.msi

The network generators RanGen1 and RanGen2 can be downloaded at

http://www.projectmanagement.UGent.be

We would like to thank Prof. Dr. Erik Demeulemeester for his useful comments at the

EURO/INFORMS joint international meeting, Istanbul, Turkey, 6-10 July, 2003.

22

REFERENCES

1. W.W. Bein, J. Kamburowski and M.F.M. Stallmann, Optimal reduction of two-

terminal directed acyclic graphs”, SIAM Journal on Computing 21 (1992), 1112-1129.

2. E.M. Dar-El, MALB - A heuristic technique for balancing large single-model

assembly lines, IIE Transactions 5 (1973), 343-356.

3. E.M. Davies, An experimental investigation of resource allocation in multiactivity

projects, Operational Research Quarterly 24 (1974), 587-591.

4. E.W. Davis, Project network summary measures and constrained resource scheduling,

IIE Transactions 7 (1975), 132-142.

5. E. Demeulemeester, B. Dodin and W. Herroelen, A random activity network

generator, Operations Research 41 (1993), 972-980.

6. E. Demeulemeester and W. Herroelen, New benchmark results for the resource-

constrained project scheduling problem, Management Science 43 (1997), 1485–1492.

7. E. Demeulemeester, M. Vanhoucke and W. Herroelen, A random network generator

for activity-on-the-node networks, Journal of Scheduling 6 (2003), 13-34.

8. S.E. Elmaghraby, Activity Networks: Project Planning and Control by Network

Models, New York: John Wiley and Sons, Inc, 1977.

9. S.E. Elmaghraby and W. Herroelen, On the measurement of complexity in activity

networks, European Journal of Operational Research 5 (1980), 223-234.

10. W. Herroelen and B. De Reyck, Phase transitions in project scheduling, Journal of

Operational Research Society 50 (1999), 148-156.

11. R.A. Kaimann, Coefficient of network complexity, Management Science 21 (1974),

172-177.

12. R.A. Kaimann, Coefficient of network complexity: Erratum, Management Science 21

(1975), 1211-1212.

23

13. E.P.C. Kao. and M. Queranne, On dynamic programming methods for assembly line

balancing, Operations Research 30 (1982), 375-390.

14. R. Kolisch and A. Sprecher, PSPLIB - A project scheduling library, European Journal

of Operational Research 96 (1996), 205-216.

15. R. Kolisch, A. Sprecher and A. Drexl, Characterization and generation of a general

class of resource-constrained project scheduling problems, Management Science 41

(1995), 1693-1703.

16. A.A. Mastor, An experimental and comparative evaluation of production line

balancing techniques, Management Science 16 (1970), 728-746.

17. J.H. Patterson, Project scheduling: the effects of problem structure on heuristic

scheduling, Naval Research Logistics 23 (1976), 95-123.

18. T.L. Pascoe, Allocation of resources - CPM, Revue Française de Recherche

Opérationelle 38 (1966), 31-38.

19. L.V. Tavares, Advanced Models for Project Management, Kluwer Academic

Publishers, Dordrecht, 1999.

20. L.V. Tavares, J.A. Ferreira and J.S. Coelho, The risk of delay of a project in terms of

the morphology of its network, European Journal of Operational Research 119 (1999),

510-537.

21. A. Thesen, Heuristic scheduling of activities under resource and precedence

restrictions, Management Science 23 (1976), 412-422.

24

APPENDIX

25

26

27

28

29

FIGURE 1

An example project network with 10 activities

1

2

3

7

4

6

5 9

8

10

End

Start

30

TABLE 1

Progressive and regressive level of each activity in figure 1

Activity i PLi RLi Activity i PLi RLi
1 1 1 6 2 3
2 1 2 7 2 3
3 1 3 8 2 3
4 2 2 9 4 4
5 3 3 10 2 4

31

FIGURE 2

An example network with its Precedence Matrix representation PM

 2 3 4 5
1 1 1 - 1
2 1 - 1
3 - -
4
-

1 2

3

5

4

s t

32

FIGURE 3

A second example network with its Precedence Matrix representation PM

 2 3 4 5
1 1 1 - 1
2 - - 1
3 - -
4
-

1 2

3

5

4

s t

33

TABLE 2

Results of the exhaustive generation of all 10-activity networks

Total number of networks found 2,567,284
Number of different OS values 46
Number of different I2 values 10
Number of different I3 values 23
Number of different I4 values 81
Number of different I5 values 91
Number of different I6 values 49
Total number of networks with different I2 to I6 combinations 48,982

34

TABLE 3

The correlation matrix of the OS and the indicators I2, I3, I4, I5 and I6

 OS I2 I3 I4 I5 I6

OS 1 0.70 0.09 0.30 0.24 -0.26
I2 1 0.42 -0.21 -0.02 0.36
I3 1 0.03 0.16 0.45
I4 1 0.67 -0.44
I5 1 -0.32
I6 1

35

TABLE 4

Computational results for the four network generators

RanGen 1 RanGen 2 ProGen RiskNet
RG1 450,593
RG2 6,052,338
RG1 ∪ RG2 1,272,039 1,272,039
RN 1,713,331
RG1 ∪ RN 9,512 9,512
RG2 ∪ RN 207,536 207,536
RG1 ∪ RG2 ∪ RN 41,887 41,887 41,887
PG 4,772,146
RG1 ∪ PG 480,579 480,579
RG2 ∪ PG 1,986,598 1,986,598
RG1 ∪ RG2 ∪ PG 1,893,001 1,893,001 1,893,001
PG ∪ RN 118,728 118,728
RG1 ∪ PG ∪ RN 15,243 15,243 15,243
RG2 ∪ PG ∪ RN 40,382 40,382 40,382
RG1 ∪ RN2 ∪ PG ∪ RN 51,381 51,381 51,381 51,381
Total 4,214,235 11,545,162 9,358,058 2,198,000
% Total 22.06 60.43 48.98 11.50
% New - Generator 10.69 52.42 51.00 77.95
% New - Total 2.36 31.68 24.98 8.97

36

FIGURE 4

Total number of networks found by RanGen2, ProGen and RiskNet

RanGen2 ProGen

RiskNet

6,052,338

1,713,331

207,536

4,772,146 1,986,598

118,728
40,382

37

TABLE 5

10 classes of network instances with different indicator values

Class I 1 I 2 I 3 I 4 I 5 I 6

1 30 0.17 0.20 0.14 0.75 0.25
2 30 0.17 0.45 0.10 0.76 0.60
3 30 0.17 0.60 0.03 0.77 0.75
4 30 0.17 0.30 0.12 0.71 0.25
5 30 0.17 0.50 0.06 0.70 0.54
6 30 0.38 0.30 0.16 0.86 0.16
7 30 0.38 0.42 0.13 0.75 0.32
8 30 0.38 0.45 0.02 0.66 0.50
9 30 0.38 0.58 0.00 0.66 0.80
10 30 0.38 0.55 0.02 0.50 0.72

38

FIGURE 5

The number of created nodes for each class for the RCPSP

10

100

1,000

10,000

100,000

1,000,000

10,000,000

0 20 40 60 80 100 120 140 160 180 200

Class

C
re

a
te

d
no

de
s

 1 2 3 4 5 6 7 8 9 10

