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ABSTRACT

In literature, both topological and resource-relateeasures are used to predict the difficulty
of a project scheduling problem. Rapid progresandigg solution procedures has resulted in
the development of a number of data generatorsrileroto generate instances under a
controlled design and in different standard setth eroblem instances. These complexity
measures need to serve as predictors for the caityptd the problem under study.

In this paper, we report on results for the topmalgstructure of a network. The contribution
of this paper is threefold. First, we review sipdtpgical network indicators in order to
describe the structure of a network in a detaileay.wThese indicators were originally
developed by [20] and have been modified or sonegticompletely replaced by alternative
indicators in order to give a better descriptiontloé topology of a network. Secondly, we
generate a large amount of different networks ¥atlr network generators. This allows us to
draw conclusions on both the performance of diffemeetwork generators and to give a
critical remark on well-known datasets from liten& Our general conclusions are that none
of the network generators are able to capture tmeptete feasible domain of all networks.
Moreover, each network generator covers its owwaort-specific domain and, consequently,
contributes to the generation of instance data s@tslly, we perform computational results
on the well-known resource-constrained project dahieg problem to proof that our

indicators are reliable and have significant pridqcicpower to serve as complexity indicators.

Keywords:Networks; Topological structure; Graphs; Projedté&tuling instances



1 INTRODUCTION

Researchers in the area of Operations Researctpraject scheduling have used
activity networks to visualize different kinds afopects. Due to the rapid progress regarding
exact and heuristic procedures, they have paidt afl@ttention to the description of the
topological structure of a network. In doing s\thiry to predict the difficulty of a particular
problem for a particular solution procedure basedh® structure of the network. Therefore,
different sets with topological indicators that cdiscriminate between easy and hard
instances and that can act as predictors of thegutational effort of the procedures have
been developed. The CPU-time that a solution pnaeedeeds to solve a particular problem
instance to optimality can typically be used toadiée the hardness of this problem instance
for the particular solution procedure. Hence, themparison of procedures and good
predictions of their required CPU-time allow thepaori selection of the fastest solution
procedure, based on the simple calculation ofdpelbgical indicators.

Quite a number of complexity measures have beepoges in the literature. [9] call
the attention to problem instances that span thednge of problem complexity. [10] have
shown the occurrence gfhase transitionsin project scheduling problems and call the
attention to the importance of measures with swfficdiscriminatory power to allow for the
observation of these dramatic changes in problefficulty. These authors distinguish
between measures capturing information about the and the topological structure of the
network and measures which are related to therdiffeesources allocated to the project.

For an overview of previous research in complexitgasures and their link with
existing network generators, we refer to [7]. Ireithpaper, the authors describe three
important complexity measures that are used to ribesdhe topological structure of a
network, i.e. the coefficient of network complex{y\NC, see [3], [4], [11], [12] and [18]), the
order strength@S see [2], [10], [13], [16], [19] and [21]) and tlkemplexity index CI, see
[1]). During the development of efficient solutigmocedures, many researchers have relied
on data instances with one of these complexity oreas[7] also provide a critical discussion
of the different network generators that are abégl@o the researchers in order to generate the
data instances. In this paper, we will i&@nGen[7], ProGen[15] andRiskNet[19] for our
computational results section, as well as the \wediwn testsePSPLIB[14]. In the remainder
of this paper, we refer to the origirahnGennetwork generator @&8anGeni. Moreover, we

report on results of a modified version R&nGenby taking new topological indicators into



account (referred to aBanGeR) that are based on improved definitions of thdicators
presented in [20]. The description of these indicats the subject of section 2.

In this paper, we focus on the topological struetoir an activity-on-the-node network
in order to compare well-known network generatoesrf literature. The organization of the
paper is as follows. In section 2 we present tkenstwork-based indicators that describe the
topological structure of any network in detail aace partly improved versions of the
indicators presented in [20]. Section 3 descrilesdgeneration process BanGe2 which
takes these new indicators into account. Sectimrdserved for a detailed description of the
structure of a network based on a simulation wile four aforementioned network
generators. We show th&anGeR is able to generate networks with a wide variety
topological measures. Moreover, we test the infbeeof the topological indicators on the
well-known resource-constrained project schedutiraplem and show that the indicators can
serve as complexity predictors. Section 5 provaesimmary, overall conclusions and areas

for future research topics.

2 THE TOPOLOGICAL INDICATORS

In this section we present six complexity measutes describe the topological
structure of a network, based on the indicatorp@sed by [20]. More precisely, thg I, and
I, indicators are exact copies from the original papile indicatords; andls are improved
versions of their corresponding original versiomslicatorls is completely new and does not
appear in [20]. All these indicators (except thstfione) have a value in the [0,1]-interval.
Each indicator measures a specific characterigtibeotopological structure of a network and
will be discussed in following subsections.

In the remainder of this paper, a network consiéts set of nodebl and a set of arcs
A. The nodes are numbered from the first node héolast noden. The arcs are used to
impose precedence relations between the nodedl@sdowe use the s&; (S) to denote the
set of immediate predecessor nodes (successor)nofdasdei linked by means of an arc.
The setd’; andS’; are used to denote the settifnodes that precede (succeed) niolifeked
by means of a path in the network. When we usectwitg-on-the-node (AoN) network, the
nodes represent activities and the arcs represeimhological precedence constraints. In order
to be in line with literature, a project networkndae extended with a dummy start node 0 and

a dummy end node+ 1.



Some indicators rely on the progressive leRkel and regressive levél; for each
activity i 0 N. These concepts have been introduced by [8] andefined as follows:

1 it B, =0
PL = 1maxpPL, +1 if B %0

jOR

and
m if S =0
RL =1minRL, -1 if § 20
i0s

with mthe maximal progressive level, i.;n = maxPL, .
iON

2.1 Indicator |, — size of problem

The first indicator of [20] measures the size @& tietwork as the number of activities

and equal$; = number of activities a.

2.2 Indicator 12 — serial or parallel indicator

Indicatorl, [0 [0, 1] measures the closeness of a network taial g& parallel graph
for activity-on-the-node networks based on the nemds progressive levels. Indicatorl; is

defined as follows:

if n=1

1
|, = -
2= |m-1 if n>1
n-1

For a network with all activities in serias,= n andl, = 1. When all activities are in

parallel therm = 1 and, consequentlis, = 0.

2.3 Indicator I3 - activity distribution

[20] introduced the widthv, of each progressive leval= 1, ...,m as the number of
activities at that level. Based ow, they defined; as a vectow that contains the width of
each progressive level. In order to be in line wiité other indicators presented in this paper,

we definel; O [0, 1] as follows:



0 if mO{1,n}

ly= Z w, —v_\4
wo-_aft if mO{1,n}
Q nax 2(m - 1)(W - 1)

This indicator measures the distribution of thevitas over the progressive levels by

calculating the total absolute deviatioms, and a,,,. @, measures the total absolute

deviation of the activity distributiow = (w1, W, ..., wy) from the average deviation=n/m

as follows:

m
a,=>.
a=1

W~ W |

a,..determines the maximal value @f, for a network withn activities andm
progressive levelsa, ., corresponds to a network for whiah- 1 progressive levels have a
width w, of 1, and one progressive level has a wigl{lof n - (m - 1). The value aof,,, can be

calculated as follows:

Qax = (m_l)(vv_ 1) + (n_ nt 1__\/\)

The first term calculates the absolute deviationvbenw, = 1 and the average width
w for m— 1 progressive levels. The second term calcutateslifference betweem, = n - (m
- 1) andw for the remaining progressive level. The formua fm#1can be simplified to
amaX:Z(m—l)(Vv— 1), resulting in thels indicator defined above. This indicator equals 1

when a,, = a,,,. At the other extreme, the indicator has a valu@ when the activities are

uniformly distributed over the progressive levéls,w. = w =n/m(fora=1, ...,m).

2.4 Indicator 14 - short arcs

The length of an ard,(j) can be defined as the difference between thergssiye
level of the end nodeand the start nodei.e. PLj — PL;. Consequently, the maximal length of
an arc equalsr— 1. We define the number of arcs in the netwaitk Vengthl asn’, = #{(i, j)

O A PL —PL =1}, with 1 <1 <m- 1. Based on this parameter, the indicatol] [0, 1]

measures the presence of short arcs (i.e. withgié = 1) and can be defined as follows:



1 if D=n-w,
l,=1n;—n+w

if D>n-w,
D-n+w,

whereD represents the maximal number of short (L) arcs in a network, given the

m-1
width of each level, i.0 =) w, * w,,, .

a=1

2.5 Indicator I5 - long arcs

Indicatorls [J [0,1] is based on the same parameter but takes - in contrast t@-

also the long arcs (i.€> 1) into account. The indicator is defined asofwk:

1 if |A=n-w,
m-1 1 -
Ig= [Zn'l m-| 1j+n'l—n+wl
= m-2 .
Anew, if |A>n-w

m-1
|A| represents the total number of arcs, and quMl . The value of thids can
=1
only be 1 if all the arcs have a lendtk 1. Dependent on the number of long arcs and the

exact length of these ardswill have a value closer to O.

2.6 Indicator 16 - topological float

This indicator takes the topological float of eacivity into account and has not been
incorporated in [20]. The topological float of adty i is defined as the difference between its
regressive and progressive level, R&; - PL;. Based on this parameter, indicaltor] [0, 1] is

defined as follows:

0 if mO{1,n}
lg = i(Rlﬂ _PLi)
m if mO{1, n}



The value oflg will be zero if none of the activities has a taggtal float > 0. At the
other extremelg will be equal to 1 for a network witm serial activities with zero topological
float and the remaining - mactivities without precedence relations (i.e. wattiopological

float of m- 1).

An illustrative Example

In figure 1, we displayed a network with 10 actest and 2 dummy activities. The
values for the different indicators are calculdtetbw.

Insert Figure 1 About Here

In table 1 we report the values for the progressine regressive level for each
activity. Based on this information, we can caltelghe values for all indicators. In this
example, we have = 10,m=4,w; =3,w, =5ws3=1,w,=1,n"; =8,n>,=4,n3=1 and
consequentyp =3*5+5*1+1*1=21.

Insert Table 1 About Here

The values for the indicators of sections 2 can hewcalculated by filling in all the
needed parameters. In doing so, we obtain

4-1 ‘B—Jf+5—:tﬂ+ 1- ]ﬂ+ l—ﬂ)
1 = 10, l,=——=1033, l,= 10 =0.67,

10-1 2*(4_1)*(7_1)

4
2-3 3-3
4+ *1+8-10+3
4=w= 007, I, = 2-4 2-4 =0.50, |6=i=0.44.
21-10+3 8+4+1-10+ 3 3*6



3 NETWORK GENERATION PROCESS: RANGEN1 AND RANGEN2

In section 3.1 we briefly review the generationgess ofRanGen. In section 3.2, we
present the logic behingdanGeR which is an enhanced versionRdnGeld and takes the six

new indicators of section 2 into account.

3.1 The generation scheme dtanGenl

The networks irRanGenl are represented bysérictly upper triangular precedence
relations matrix This binary precedence matiXM denotes whether or not a precedence
relation exists between two nodes. The matrix canldfined as followsM; :{: Ez:j z(l)

J
and is illustrated by the network as given in fgg®. Notice that we add a dummy start
activity s and a dummy end activityto visualize the network but we do not incorpotatese

in the precedence matiV.

Insert Figure 2 About Here

The generation process of a networkRanGed with pre-specifieddSvalue boils
down to the deletion of arcs. Indeed, the genesttuts for each generation with a completely
connected network for whicdBS= 1 and removes arcs until it obtains a networklie pre-
specified order strength. The set of arcs is ugteseh time an arc has been removed. Due to
this simple logic,RanGen guarantees to find a network with a given valoethe order
strengthOS

Since the removal of arcs can lead to networks witlifferent precedence matii?m
but with a similar topological structure, each netkvmust be checked for uniqueness by the
recursive enumeration procedure described in {Zhd network has not yet been generated, it
is added to the set of generated netw@hks(initially GN = [0). RanGed continues this way
until a pre-defined number of networks has beereggad or until a certain time limit has

been reached.

10



3.2 The generation scheme dtanGen2

The generation process BRAnGend is completely determined by pre-specified values
for 1 and OS RanGeR relies on the same basic logic of removing aleg, aims at
generating networks with pre-specified values ffprand I,. Consequently, the generator
removes arcs until it obtains a network with a gpecifiedl,-value. HoweverRanGeR
distinguishes fronRanGen in two basic characteristics: the start netwdrkach generation
run and the number of networks per run.

A first fundamental difference is the start netwak each generation run. While
RanGen starts with a unique serial network wilts = 1, RanGeR starts from a larger pool

of possible networks. More preciselganGe2 starts with a network for which the is
randomly chosen from the interval,[, 1], with 1, the pre-specified value fdp and anls-

value randomly chosen from the interval [0, 1]. Bert values of all other indicators equal
=15 = 1 andlg = 0. In doing so, we start from a larger pool okgible start networks, and
hence more different network with pre-defined irdiis values can be generated.

A second difference lies in the number of netwogenerated per rurRanGen
removes arcs from a network until a pre-speci@ivalue is obtainedRranGeR removes, in
a similar way, arcs from a network until a pre-sped I,-value is reached. From this point
onwards,RanGeR continues with the removal of arcs. Indeed, frtremovals might be
possible without decreasing the valud 0fThis process continues until no arc can be delete
without decreasindp. Thus, while forRanGel exactly one network is generated per run, a
set of networks are generated in each run RahGeR with pre-specified values foy andl,
but with a different topological structure (i.ehet values fots, |4, Is, andlg). Consider, as an
example, the network of figure 2 for whiéDS = 0.5 andl, = 0.5. RanGen stops with
removing arcs since otherwise @&value would decreasR®anGe2, however, can continue
since removing certain arcs can lead to networkis thie same valuk = 0.5. In figure 3, we
have removed arc (2, 3) from the precedence matich thatOS = 0.4 andl; = 0.5. These
two networks (figures 2 and 3) are savedRanGeR, since they both meet the conditiers
0.5. At that pointRanGe stops with the removal of arcs, since this wde&tl toOS= 0.3
andl, = 0.25.

Insert Figure 3 About Here

11



After the generation of each netwofRanGeR checks whether the network has a
different topological structure than previous geted networks by means of the recursive
search procedure of [7]. The pseudo-code to gemeraet ofactivity-on-the-node networks
GN that meet pre-specified valugs and I, can be described as given below. Note that for

each generation run, more than one activity netwdkk can be generated as explained
previously in this section.

procedure generatel;, 1,);
GN=[;
AN = activity network withn = I, andl, O [I,, 1],130[0, 1],l4=1s=1
andlg = 0;
REPEAT

REPEAT

arc = select_ard&N);
AN =remove_ardN, arg;
Unique_representatioAl);
If (AN O GN) then save the networkGN= GN [ AN;
Until 1= 1,;
Repeat
arc = find_removable_arc_without_changihgAN);
AN =remove_ardN, arg;
Unique_representatioAl);
If (AN O GN) then save the networkGN= GN [ AN;

Until arc = 0O;
Until #GN> pre-specified number of generated networks
Return;

This generation process used fanGe2 has been programmed in Borland C++,
version 4.0, and can be downloaded at http://wweygstmanagement.UGent.be. Since the
generator generates many networks in a small timie and it calculates and stores thgl,,

Is andlg values each time a new network has been genefded)ser is able to generate
networks with a pre-specified value for all indmastl; to Ie.

4 EXPERIMENTAL DESIGN - RELATIONS BETWEEN INDICATOR S

In this section, we present results for the retetibetween the indicators as well as
results for network generators. We also use thé-kmelwn PSPLIB dataset for comparison

purposes. The generation of networks has beenedivit three main parts. In subsection 4.1,

12



we display the results of an exhaustive generaifaal 10-activity networks. In doing so, we
are able to present computational results thatatadapend on the performance of network
generators. In subsection 4.2, we discuss thengstéind results of our computational tests
and generate networks of 30 activities with foufedent network generators. Although we
are not able to generate all possible networksaf size, the tests allow us to compare the
performance of these network generators by meariseoindicators presented in this paper.
The results of this test are presented in sectiBn |4 section 4.4, we report computational
results for the well-known resource-constrainedgmtoscheduling problem and show that our
indicators can be used as complexity indicators.dfloour tests, we used a Toshiba personal
computer with a Pentium IV 2 GHz processor and MR Ram under a Windows XP

operating system.

4.1 The exhaustive generation of all 10-activity neorks

A network generator can be callstlongly randonif it is able to generate networks at
random from the space of all feasible networks witpecified number of nodes and arcs [5].
[7] argued that the generation of strongly randatworks could be possible by enumerating
all possible network structures which satisfy presdues of the complexity parameters and
by randomly selecting a subset of networks aftedwarDue to CPU-time and memory
restrictions, however, this method is only applleator networks with a small amount of
activities. In this subsection, we generate allmogks with 10 activities and display some

interesting results in table 2.

Insert Table 2 About Here

The table reveals that there exist 2,567,284 nédsvearith 10 activities and with a
different topological structure. Rows 2 to 7 digplle number of settings for different
indicators. Since we generate all 10-activity nekgpthe maximum number of precedence
relations equals (10 * 9) / 2 = 45. Consequently,have 46 settings for tl@S varying from
0 to 1in steps of 1/ 45. This means that, oratlerage, 2,567,284 / 46 = 55,810.52 networks

exist per setting. As shown in [7], there are mamyre networks with a®@Svalue of 0.5

than, for example, a®@Svalue of 0.20. Sinck has been defined arg—_ll (withn =1, = 10),
n —

13



we have 10 settings for theindicator, varying from 0 to 1 in steps of 1 /The number of
settings for indicatorss, 14, Is andlg is somewhat more confounding. To that purpose, we
have calculated the values for these indicatore twb decimal places. In doing so, we have
101 settings, varying from 0 to 1 in steps of 0.01.

The last row displays the number of networks wiitiecent values for the, to le
indicators. To that purpose, we have created aimafrsize 10 * 10% according to the
different settings as described before (10 setting$, and 101 settings fdg to lg). During
the complete enumeration, we check whether a n&twih different values for the, I3, |4,

Is and I indicators has been found. The total number ofvadts with a uniqud, to le
combination equals 48,982.
In table 3, we display the correlation matrix fobetOSand the indicatork, 13, 14, Is

andls. As an example, the correlation coefficiegt, = 0.70 is intuitively clear. The more

levels (n) a network has, the larger thevalue and the more precedence relations a network

can have (which results in a larg@Svalue). The correlationr, , = 0.67 is also

straightforward, since both andls are constructed to measure the ‘length’ of the amca

network. All the other correlation coefficients dogver than 0.5, as displayed in the table.

Insert Table 3 About Here

Note that the results of this subsection are bapet the complete enumeration of all
existing networks with 10 activities. The number redtworks with different topological
structure with 11 activities is equal to 46,749,586 were not able to determine the number
of networks with 12 activities, due to CPU-time andmory restrictions. In the next section,
we generate networks with 30 activities by meandiféérent network generators. Since it is
impossible to generate all networks, we use tw@ stiteria as described in the following
section.

4.2 Comparison of network generators

In this section we generate a large number of nétsvaiith different values for the
indicators. This experiment allows the comparisdndifferent network generators from
literature. Moreover, it serves as an illustratioihthe relations and dependencies of the

different indicators. In all experiments, we havmsen to sek; = 30 in order to compare it

14



with the PSPLIBinstances ([14]) with 30 activities. Similar retsuhave been found with the
60, 90 and 120 instances. Our tests are basedeonsth of four network generators, i.e.
RanGend, RanGeR, ProGen and RiskNet In order to have a fair comparison between
network generators, we try to cover the whole domai feasible networks as much as
possible by exploiting specific information abol tnput parameters of each generator.

RanGen generates network instances with given valueddtinl; andOS Since, in
our experimentsn = 11 = 30, the maximal number of arcs equals (30 */2BF 435. In order
to cover the whole domain specified by tB§ we vary this measure in steps of 1 / 435. In
doing so, we have 436 settings, starting from alfmetwork OS= 0) and ending with a
serial network QS= 1), by allowing one extra arc at the time pdtisg. Note that, because
of the simple logic of the generation process, aativork can be generated in a very small
amount of time.

RanGeR generates network instances with given valuebdtnl, andl,. Sincel, has

. m-1 . . .
been defined as—1 , h =11 = 30 and since we want to follow a similar reaagras for the
n —

RanGen instances, we need to use 30 settings. Thereferéx the values fol, from 0 to 1
in steps of 1/ 29 in order to generate networkk @il possible values df.

For the generation of networks wiltoGen we relied on the source code to generate
a large number of networks. The input values fes ¢fenerator are the coefficient of network
complexity, the maximal number of successor aaisibnd the maximal number of starting
and ending activities of the project. TB&C s defined as the number of arcs divided by the
number of nodes in the network. The minin@NCGvalue equals 0 and corresponds to a
parallel network. The maxim&NGC-value for a network witt; = 30 is 7.5. This corresponds
to a two-level {n = 2) network with 15 activities on each level Wanich all activities of level
1 are predecessors of all the activities of theoisédevel. In order to guarantee that every
possible network can be generated, we use — iasityito the previous network generators —
226 settings for th€NC, ranging from 0 to 7.5, in steps of 1 / 30. Alhet input parameters
(such as the number of successor and predecessoextpvity and the maximal number of
start and end activities) have been chosen randsudly that they do not restrict the feasible
domain of networks.

In order to generate networks wiiskNetwe need to control 3 input parameters. The
value for the first indicatoily, equals 30. The values for the second indic&tpare similar to
the settings of th®anGeR test instances (30 settings). The third inpuapeater is equal to

I, as described in this paper. Since this indicateasures the number of ‘short’ arcs, and it

15



equals 0 when there is no such relations and ialequ when there af@ such relationsD

m-1
equals Zwa*wa+1 and depends on the value laf However, the maximal value fdb,

a=1
regardless of thés;-value, equals 225 as described previously. Coresgty) we use 226
settings for thé, indicator, ranging from 0 to 1, in steps of 1 622

In the next section, we discuss the results ofctraputational tests and display them
in a graphical way (see the scatter plots in thgeagdix). In order to have a fair comparison
between network generators, it is necessary torgenas many networks as possible. To that
purpose, we apply a stop criterion for each settamgl consequently, continue then with the

next setting) if the generation run of networkseada one of the following criteria:

(1) Maximum allowable CPU-time of 1 network of 100cerds. Exceeding this
time limit indicates that no network with the giverput parameters can be found by
the network generator under study. Note that thisomly occur for theRiskNetand
ProGengeneratorRanGeld andRanGeR always assure the existence of a network
with the given input parameter in a very small amaf CPU-time.

(i) Maximum 1,000 consecutive generations withoudifig a new network. This
means that the network generator is not able tbdinew network which has not been
generated previously. Due to memory restrictioms, define a new network as a
network for which no similat, to I combination has been found. Note that we could
also have used the recursive search procedurd,dfyithis would lead to too many

networks with a different topological structure Imenticall, to I combinations.

For each setting, we generate the network instaacesrding to the input parameters

described in this section and, afterwards, we taleuhe values for all the other indicators.

4.3 Experimental results

As mentioned in previous section, we note that exehdefined a ‘new’ network as a
network with a differentl, to I combination than a previously found network. Tatth
purpose, we have created a matrix of size 30 # 40 indicated whether a network has been
found for each field of this matrix. This is exgcthe same approach that we have taken in

generating all 10-activity networks (48,982 ‘newetworks versus the 2,567,284 found

16



networks). Consequently, if we refer to the numbémew networks found, we refer to
networks with different, to l¢ combinations.

Table 4 presents the results of our computatioeststfor the four different network
generators. The total number of new networks foeqdals 19,105,294. The different rows
contain the number of new networks found by a cowiion of network generators. As an
example, 450,593 networks were found RgnGed which were not found by any other
network generator. 1,272,039 networks were foundRapGeld andRanGe2 which were
not found byRiskNetor ProGen The row “Total” contains the total number of neetworks
found per network generator, and the row “% Totdpresses this number as a percentage of
the total number of new networks found by all gatms, i.e. % Total = Total / 19,105,294.
The next two rows give an indication of the amoofiew networks that were found by only
one network generator. The row “% New — Generagapresses this number as a percentage
of the total amount of new networks found by tha@egator. The row “% New — Total”

expresses this number as a percentage of theatataint of new networks found.

Insert Table 4 About Here

The table reveals th&®anGeR outperforms all other network generators in thalt
amount of networks generated. Indeed, somewhat thare60 % of the networks were found
by RanGeR. ProGenis also able to generate a large set of the @taunt of networks
(48.98 %).RanGed andRiskNetshow a very poor performance since they can betieigate
only a small subset of all generated networks @2#and 11.50 %, respectively). The total
running time to generate all these networks amauideabout 10 hours foRanGend, 18
hours forRanGen, 2 days foRiskNetand about 2 weeks f&roGen

Although an evaluation of different network generat may lead to interesting
conclusions, our ultimate purpose is not to complagenetwork generators as such, but rather
to show that improvements can be made by combitiieguse of different generators. This
information can be found in the rows “% New — Geer’ and “% New — Total”. One the
one hand, these rows reveal that, despite its pedormance on the total amount of new
networks,RiskNetis able to generate a large set of networks tleaewot found by any other
generator. Indeed, almost 78 % of the networksdduRiskNetwere not found by any other
network generator. However, this fraction countdydor 8.97 % of the total amount of

networks foundRanGeid, on the other hand, is only able to provide 2@8&ew networks
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that were not found by any other network generatod, thus does not contribute much to the
total set of 19,105,294 networkRanGe andProGenboth have a high contribution to the
total amount of networks generated. Approximatedpo5of the networks found by both
generators were completely new. Almost 32 % otradl networks have only been generated
by RanGe2 and almost 25 % of all the networks have onlynbgenerated biProGen This
information has been summarized in figure 4RanGe2, ProGenandRiskNet Due to the

low contribution ofRanGend, we have deleted this network generator in iQisré.

Insert Figure 4 About Here

This picture clearly illustrates the advantagelsf tombination of different network
generators. All network generators were able teggp a large amount of networks that were
not found by any other. The intersection of difféaraetwork generators contains a relatively
small amount of networks, and only 40,382 similawmetworks were found by the three
network generators.

In the appendix, all pairs of indicators have beisplayed by two-dimensional
scatterplots. These graphical pictures allow algemmparison of network generators and
provide insight into the relations — albeit in omlyo dimensions — between the indicators. In
order to have a complete overview, the resultstlier PSPLIB instances have also been
displayed. These graphs must be interpreted frdstrangly randomness’ point of view. If
the generated networks only cover a small portibthis whole domain, only a very small
amount of possible networks can be generated amdchéitwork generator fails to be ‘as
strongly random as possible’. Therefore, the better scatterplots cover the domain, the
better the network generator is.

The plots indicate thaRanGeR clearly outperformsRanGend since all areas
generated by the last generator have also beerragedeby the first one. ThRanGen
procedure starts with a serial network and remaves until it obtains a network with the pre-
specified order strength. It has been mentioned7bythat some networks have only one
representation in the PM while others have manyhdigh each possible network can be
theoretically generated, the probability of a netwtm be generated is heavily related to its
corresponding number of representations in the Bbme networks have many different
representations, while others have only one and #ra very unlikely to be generated by

Rangend. RangeR tries to overcome this problem by starting withemerated network with a
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randomly selecteds; value. In doing soRanGeR2 starts from a larger pool of possible
networks, and hence, more different networks cagdmerated.

The scatterplots reveal thRiskNetperforms reasonably well and generates networks
from almost the same space thRanGeR. This network generator usesandl, as input
values for the generation process, and hence shiogvggood performance from a two-
dimensional point. However, in the previous sectwe illustrated that the generator is not
able to generate a lot of different networks.

ProGenoutperformsRiskNetand RanGed in the number of different networks, but
performs less in generating networks from the fdasiiomain, as illustrated in a number of
graphs (see e.dp Vs. l4, 12 vS. Is Or I, vs. lg). As an exampleProGenfails in producing
networks with higH,-values (see the scatterplots of the appendix)s@tang serial chains of
activities are hard to generate, due to the spegéneration process BfoGenand the extra
input parameters, such as the maximal number afessor activities. The process assigns
predecessors to each activity (see step 2 of [BJgh results in a tree structure when the
maximal number of successors exceed the value ldétce, a final network structure with a
high I-value is quite unlikely. Only when the maximal rugn of successor activities is set to
one, a limited number of networks with a higtvalue will be generated.

Remark that the results are sometimes misleading tu the settings of our
experiment. Thel; vs s plot, for example, shows vertical lines for almadl values forl,.
The reason is that we only have generated netwaitksl,-values in 30 discrete steps. This
graph must therefore be seen as a black pictureriog the domain of feasible networks,
since intermediate areas do not exist. Note tr&ad3b set only covers a very limited space,
while RanGenl, RanGeR2, ProGenandRiskNetare able to generate networks from a wider
part of all the feasible networks. Of cour&SPLIB contains only a small fraction of the
networks generated by the network generators, lagfore, the comparison serves only for

illustrative purposes.

4.4 The predictive power of the indicators

Although the aim of our paper is to investigatenwek generators and detect possible
improvements, it is interesting to give a first mapsion of the predictive power of the
indicators presented in section 2. More precisehg, give preliminary results that the
proposed indicators have discriminatory power &dmt between easy and hard instances for

a particular algorithm and hence, allow the a-petection of the fastest solution procedure
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for a problem instance. To that purpose, we haveigged 10 classes of network instances,
each containing 100 instances, with indicator valas given in table 5. We extended each
network instance with 4 renewable resources withsaurce-constrainedness (see [17]) of 0.4
and a resource use [7] of 0.75.

Insert Table 5 About Here

We have used these networks as resource-constramogect scheduling problem
instances (RCPSP), that can be solved to optimhjitthe procedure of [6]. The number of
created nodes in this branch-and-bound procedw@® tassolve these instances to optimality
is given per class in figure 5. The number of @datodes can be used as a measure to predict
the problem instance complexity for the branch-bodnd procedure used.

Insert Figure 5 About Here

This figure reveals that instances within a classrather homogeneous with respect to
the number of created nodes, while the number vatiastically between different classes.
This gives a first indication of the predictive pemof our indicators, and hence they might
serve as a predictor for problem instance complexitd the a-priori selection of the fastest
procedure. Furthermore, it indicates that netwavikhin one class are rather similar while
network instances between classes show signifdiéfierence. Consequently, a combination

of 1 to I values can be used to predict the behaviour ofudisn procedure.

5 CONCLUSIONS

In this paper we discussed six indicators that ril@sche topological structure of a
network into detail. Some of these indicators an@roved versions of the [20] indicators.
These network-based indicators have been usedddyvand enhance the generation process
of a network generat®®anGen [7].

The experimental section consists of three maitspéar a first section, we displayed
the results of the generation of all 10-activitywarks and reported some interesting results.
In a second section, we have generated a large¢ setworks in order to have an overview of

the relation between the indicators and to comphee performance of different network
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generators. To that purpose, we rely on the geparaechnique of the original network
generator RanGen) and on the newly presented technique in thiepépanGeR). We also
included networks generated WBroGen and RiskNet and we compared our nets and
associated indicators with tlRSPLIBlibrary. In a last section, we show that our imdizs
are reliable to predict problem instance compleXy reporting results on the resource-
constrained project scheduling problem. We show ttia variance between networks within
one [, to lg] vector is rather low, while networks between s&sshow a significant variance
with respect to the number of created nodes taesihle problem instances to optimality.

Our future intentions are twofold. First, we wantcreate a benchmark dataset to use
for further research in the project scheduling camity. Therefore, we can rely on the
experimental research of this paper, that illusgahat a combination of different network
generators is necessary during the generation gsoddoreover, thé®SPLIB results show
that these network instances only represent a spumation of the feasible domain and,
consequently, more networks are needed. A secopit w@f future research lies in a
benchmark comparison of different existing proceduny using networks generated by our
new procedure. In doing so, we can detect whethertdpological indicators reveal some
phase transitions for certain problem types. Wecarerinced that this benchmark comparison
opens new insights into the understanding and gtiedipower of the complexity of existing

and new algorithms.
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FIGURE 1

An example project network with 10 activities
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TABLE 1

Progressive and regressive level of each activity figure 1

Activity i

PL

RL

Activity i

P

abhwnNPEP

WN R BRP R

1
2
3
2
3

6
7
8
9
10

NP WWWIIT
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FIGURE 2

An example network with its Precedence Matrix repreentation PM
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FIGURE 3

A second example network with its Precedence Matrikepresentation PM
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TABLE 2

Results of the exhaustive generation of all 10-agtty networks

Total number of networks found

Number of differenOSvalues

Number of different, values

Number of differents values

Number of different4 values

Number of differents values

Number of differentg values

Total number of networks with different 12 to I6mbinations

2,567,284
46
10
23
81
91
49
48,982
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The correlation matrix of the OS and the indicatorsl,, I3, 14, Is and lg

oS
P
I3
4
Is
ls

(O
1

P
0.70

TABLE 3

I3 ls

0.09 0.30

0.42 -0.21

1 0.03
1

Is
0.24
-0.02
0.16
0.67

1

le
-0.26
0.36
0.45
-0.44
-0.32

34



TABLE 4

Computational results for the four network generatos

RanGen1 RanGen2 ProGen RiskNet
RG1 450,593
RG2 6,052,338
RG1 0 RG2 1,272,039 1,272,039
RN 1,713,331
RG10O RN 9,512 9,512
RG2 0 RN 207,536 207,536
RG10 RG20O RN 41,887 41,887 41,887
PG 4,772,146
RG10O PG 480,579 480,579
RG2 0 PG 1,986,598 1,986,598
RG1 0 RG20 PG 1,893,001 1,893,001 1,893,001
PG ORN 118,728 118,728
RG1OPG ORN 15,243 15,243 15,243
RG20 PG ORN 40,382 40,382 40,382
RG10ORN20O PG ORN 51,381 51,381 51,381 51,381
Total 4,214,235 11,545,162 9,358,058 2,198,0p0
% Total 22.06 60.43 48.98 11.50
% New - Generator 10.69 52.42 51.00 77.95
% New - Total 2.3¢€ 31.6¢ 24.9¢ 8.97




FIGURE 4

Total number of networks found by RanGen2, ProGen ad RiskNet

ProGen RanGei2

RiskNet
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TABLE 5

10 classes of network instances with different indator values

Class

I

P

I3

P

I's

© 00 ~NO UL WN P

[EnY
o

30
30
30
30
30
30
30
30
30
30

0.17
0.17
0.17
0.17
0.17
0.38
0.38
0.38
0.38
0.38

0.20
0.45
0.60
0.30
0.50
0.30
0.42
0.45
0.58
0.55

0.14
0.10
0.03
0.12
0.06
0.16
0.13
0.02
0.00
0.02

0.75
0.76
0.77
0.71
0.70
0.86
0.75
0.66
0.66
0.50

0.25
0.60
0.75
0.25
0.54
0.16
0.32
0.50
0.80
0.72
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FIGURE 5

The number of created nodes for each class for tHRCPSP

10,000,000
M &
1,000,000 o g ® e S ®e
° () % r ¥4 o
g 100000, Q ‘o . s.
S 10,0001 e .‘03 Y
2 1,000 J. 3 .
E 100 - .’ *
o ° ]
10
1 2 3 4 5 6 7 8 9 10
Class

38



