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ABSTRACT

Recently, time-switch constraints have been introduced in literature by Yang and Chen (2000).

Basically, these constraints impose a specified starting time on the project activities and force them

to be inactive during specified time periods. This type of constraints have been incorporated into the

well-known discrete time/cost trade-off problem in order to cope with day, night and weekend

shifts.

In this paper, we propose a new branch-and-bound algorithm which outperforms the previous one

by Vanhoucke et al. (2002a). The procedure makes use of a lower bound calculation for the discrete

time/cost trade-off problem (without time-switch constraints). The procedure has been coded in

Visual C++, version 6.0 under Windows 2000 and has been validated on a randomly generated

problem set.

Keywords: Project Management; CPM; Time/cost trade-off problem; Time-switch constraints.
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1. INTRODUCTION

Time/cost trade-offs in project networks have been the subject of intensive research since

the development of the critical path method (CPM) in the late 50s. Time/cost behaviour in a project

activity basically describes the trade-off between the duration of the activity and its amount of

nonrenewable resources (e.g. money) committed to it. It is generally accepted that the trade-off

follows a nonincreasing pattern, i.e. expediting an activity is possible by allocating more resources

(i.e. at a larger cost) to it. However, due to its complexity (the problem is known to be NP hard (see

De et al. (1997)), the problem has been studied under a number of different assumptions.

The early time/cost trade-off models assumed the direct activity cost functions to be linear

non-increasing functions. The objective was to determine the activity durations and to schedule the

activities in order to minimize the project costs, i.e. the sum of the direct activity and the time-

dependent indirect project costs, within a specified project deadline. Therefore, the activity costs are

a function of the activity durations, which are bounded from below (crash duration) and from above

(normal duration). Solution procedures for the linear case are proposed by Kelley and Walker

(1959), Fulkerson (1961), Kelley (1961), Ford and Fulkerson (1962), Siemens (1971), Goyal (1975)

and Elmaghraby and Salem (1981). Several other forms of activity cost functions have been studied,

such as concave (Falk and Horowitz (1972)), convex (Lamberson and Hocking (1970), Kapur

(1973), Siemens and Gooding (1975), Elmaghraby and Salem (1980a,b)) or even general

continuous activity cost functions (Moder et al. (1983)).

As research efforts progressed and practical needs arose, researchers began to focus on the

development of procedures for solving the discrete version of the problem. This discrete time/cost

trade-off problem occurs when the duration of project activities is a discrete, nonincreasing function

of the amount of a single nonrenewable resource committed to them. It involves the selection of a

set of execution modes (the time-cost tuples for each activity) in order to achieve a certain

objective. In the literature, the problem objective has been divided into three parts. The so-called

deadline problem (problem 1,T�cpm,δn,disc,mu�av following the classification scheme of

Herroelen et al. (1999)) aims at minimizing the total cost of the project while meeting a given

deadline while the budget problem (problem 1,T�cpm,disc,mu�Cmax) involves minimizing the

project duration without exceeding a given budget. A third objective is to construct the complete

and efficient time/cost profile over the set of feasible project durations (problem

1,T�cpm,disc,mu�curve). Research papers has been written by Crowston and Thompson (1967),

Crowston (1970), Robinson (1975) Billstein and Radermacher (1977), Wiest and Levy (1977),

Hindelang and Muth (1979), Patterson and Harvey (1979), Bianco and Speranza (1990), Vercellis

(1990), Elmaghraby and Kamburowski (1992), De et al. (1995, 1997), Demeulemeester et al. (1996,
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1998), Skutella (1998) and Akkan et al. (2000a,b)). In an attempt to tighten the bridge with the

current practice, Vanhoucke et al. (2002a) have extended this discrete problem type with so-called

time-switch constraints, as introduced by Yang and Chen (2000).

Although the first research endeavors stem from more than 50 years ago, the problem still is

very actual. Indeed, next to the famous project examples (e.g. the tunnel between France and the

United Kingdom), production managers also focus on the development of unique products, such as

the development of a new automation system, the installation of a new software program, and many

others. Moreover, due to the increasing competition, many firms are obliged to accomplish tasks

that do not fit neatly into business-as-usual. Project management fits very well into this new

philosophy, due to its unique characteristics and its known and limited duration. Finally, in our

current environment of time-based competition, expediting activities is a matter of course, which

defends the use of time/cost trade-offs on the activity level.

In this paper, we focus on the discrete time/cost trade-off problem with time-switch

constraints for which the literature is, to the best of our knowledge, restricted to the paper by

Vanhoucke et al. (2002a). These constraints impose specific starting times on the project activities

and force them to be active and inactive during specific time periods. Consequently, these types of

constraints serve well for incorporating day and night shifts. In the following section we briefly

review the features of the problem and the branch-and-bound approach of Vanhoucke et al. (2002a).

In section 3 we describe our new exact procedure. We also illustrate the procedures using a real-life

problem example. A section is reserved on detailed computational results. The last section draws

overall conclusions.

2. DESCRIPTION OF THE PROBLEM

In the sequel of this paper, we assume that a project is represented by an activity-on-the-arc

network G=(N,A) where the set of nodes, N, represents network events and the set of arcs, A,

represents the activities of the project. The nodes of the network are numbered from the single start

node 1 to the single end node n. The duration xi of an activity i ∈  A is a discrete, nonincreasing

function of the amount of a single nonrenewable resource (money, yi) allocated to it. The tuple (xi,

yi) is referred to as a mode. The deadline version of the discrete time/cost trade-off problem without

time-switch constraints (problem 1,T�cpm,δn,disc,mu�av) involves the scheduling of project

activities in order to minimize the total cost of the project.

Vanhoucke et al. (2002a) have extended this basic problem type with so-called time-switch

constraints. These constraints force activities to start in a specific time interval and to be down in

some specified rest intervals. In this paper, they have restricted their analysis to three different
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work/rest patterns. For an overview, we refer to the paper by Yang and Chen (2000), in which the

concept ‘time-switch constraint’ has been introduced for the very first time.

The specific time-switch constraints addressed in this paper can be classified into three main

categories, corresponding to three different shifts. An activity following the so-called day-pattern

can only be executed during day time, from Monday till Friday. This pattern may be imposed when

many persons are involved in executing the activity. Activities that follow a d&n-pattern can be

executed during the day or night, from Monday till Friday. This pattern may be followed in

situations where activities require only one person who has to control the execution of the activity

once and a while. A dnw-pattern consists of activities that can be in execution every day or night

and also during the weekend. This may be the case for activities which do not require human

intermission.

Furthermore, we assume that an activity duration is expressed in work periods of 12 hours.

Moreover, one time unit equals 24 hours and is equal to two works periods. Figure 1 illustrates the

gannt chart for three activities with a duration of 4 work periods under the three different time-

switch constraints. Black areas represent work periods while grey areas symbolize rest periods.

Finally, the lead time for an activity equals the finishing time fi – starting time si. For more details,

we refer the reader to Vanhoucke et al. (2002a). In the sequel of this paper we assume that each

activity starts as early as possible within the precedence constraints and, consequently, no further

ready times are imposed on the activities. However, an overall specified starting time of the whole

project is imposed, varying from Monday till Sunday.

Figure 1. A Gannt chart for activities with a duration of 4 work periods

According to the classification scheme of Herroelen et al. (1999), the discrete time/cost

trade-off problem with time-switch constraints (DTCTPTSC) can be referred to as problem

1,T�tsc,cpm,δn,disc,mu�av. Since time-switch constraints (tsc) can be considered as a variant of

preemption (work periods alternated by rest periods), we have placed the abreviation tsc in the

second field (the so-called β-field).
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3. SOLUTION PROCEDURES FOR THE PROBLEM

In section 3.1 we briefly discuss the logic of the branch-and-bound algorithm of Vanhoucke

et al. (2002a). In sections 3.2 and 3.3, we present a completely new branch-and-bound procedure

that clearly overcomes the drawbacks of the previous procedure, as shown in our computational

results section. In both approaches we make use of the branch-and-bound procedure of

Demeulemeester et al. (1998) for calculating the lower bounds.

3.1. The exact branch-and-bound procedure of Vanhoucke et al. (2002a)

In the sequel of this paper, we refer to the paper by Vanhoucke et al. (2002a) as the VDH

procedure. This branch-and-bound procedure is based on the following logic: at the root node of the

branch-and-bound tree, all activities are scheduled in their normal mode (i.e. the mode

corresponding to the highest duration and the lowest cost). If this schedule has a duration which is

lower than or equal to the project deadline, the algorithm reports the optimal cost of the project. If

this is not the case, the algorithm starts to branch.

The branching strategy identifies critical activities which have to be crashed in order to

decrease the project duration. To that purpose, the algorithm randomly selects a critical path and

generates a new node on the next level of the branch-and-bound tree for each activity of this critical

path. Activities of the critical path are crashed at each new node of the branch-and-bound tree. At

each node, lower bounds are calculated on the total project cost by the procedure of

Demeulemeester et al. (1998). If this lower bound solution corresponds to a feasible schedule (i.e.

the project duration with time-switch constraints is smaller than or equal to the deadline), the

algorithm updates the upper bound ub of the project. Nodes are pruned due to lower bounds that are

larger than the current feasible solution or due to the application of an adapted version of the subset

dominance rule (De Reyck and Herroelen (1998)). The algorithm backtracks when there are no

nodes left unexplored at a particular level and stops when it backtracks to the initial level of the

branch-and-bound tree.

The computation of the lower bounds at each node is based on the procedure of

Demeulemeester et al. (1998) for the discrete time/cost trade-off problem without time-switch

constraints (further abbreviated as the DTCTP). To that purpose, the activity durations of all the

modes must be modified by adding the minimal rest time of each activity. This minimal rest time

corresponds to the rest time of each activity under the assumption that this activity would start on

Monday.
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As shown in the VDH paper, the new duration x’i for each mode of each non-dummy

activity i can be calculated by adding the minimal rest time according to the following formulas:

day-pattern : x’i = 2 xi + 4 �(xi -1)/5�

[1]

d&n-pattern : x’i = xi + 4 �(xi -1)/10�

[2]

dnw-pattern : x’i = xi 

[3]

which modifies the new duration x’i of each activity to its lead time when it starts on Monday. Note

that we assume that no activity can be started during a night period.

3.2. Our new branch-and-bound procedure

Our new branch-and-bound algorithm uses an identical approach to calculate the lower

bound at each node of the tree. Consequently, the lower bound algorithm ignores the time-switch

constraints and reports an optimal mode for each activity with a corresponding lb-cost and a project

duration. If the corresponding time-switch schedule (i.e. scheduling all activities with the lb-modes

without ignoring the time-switch constraints) results in a total project duration larger than the

project deadline, the algorithm needs to branch. This branching strategy differs completely from the

VDH procedure.

3.2.1. The branching strategy

The algorithm searches for a branching activity ba for which the lead time is larger than its

duration x’i under the lower bound calculations. In figure 2 we illustrate the potential difference

between the lower bound duration x’i and the corresponding time-switch lead time for an activity

following a day-pattern with a duration of 4 work periods. The minimal duration of this activity is –

according to equation [1] – x’i = 2 * 4 + 4 �(4 -1)/5� = 8. However, figure 2 reveals that this duration

is only valid for schedules (1) and (2) when the activity starts on Monday or Tuesday. The lead time

of this activity amounts to 12 work periods for schedules (3) – (6) and 10 for schedule (7).
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Consequently, depending on the start time of the activity, it is possible that the lead time is larger

than the activity duration x’i used in the lower bound calculations.

Figure 2. A day activity with duration of 4 work periods

Our new branching strategy relies completely on this observation and selects an arc out of

the network as the current branching activity ba (see figure 3). This branching activity must have a

lead time which is larger than the reported activity duration, given its starting time reported by the

DTCTP algorithm (lower bound calculation). The algorithm then divides the possible starting times

of the branching activity into three distinctive regions. To that purpose, the algorithm computes two

possible starting times t1 and t2. Suppose e.g. that the DTCTP algorithm reports that an activity ba

starts at the 18th day (work period 36, a Thursday) of a project starting on Monday, January 1st.

Consequently, this activity behaves like schedule (4) of figure 2 with a lead time of 12 work periods

which is larger than the duration of 8 work periods. This lead time is valid between work period t1 =

34 (Wednesday) and t2 = 40 (Saturday). Between these two starting times, the activity duration is

set to x’i = 12, outside this range, we still use the duration of x’i = 8.

Figure 3. The branching activity ba in a project network

i j
ba

Wed
d    n

Thu
d    n

Fri
d    n

Sat
d    n

Son
d    n

Mon
d    n

Tue
d    n

Wed
d    n

Thu
d    n

Fri
d    n

Tue
d    n

Mon
d    n

(1)
(2)

(3)
(4)

(5)
(6)

(7)



10

In doing so, we create three new child nodes at the next level of the branch-and-bound tree

and divide the possible starting times of the branching activity into three distinct regions. The

characteristics of the three nodes can be described as follows:

Node 1. Event i must start earlier than t1

At the first child node of the branch-and-bound tree, the algorithm forces the branching

activity ba = (i, j) to start earlier than the reported period t1. To that purpose, we simply add an extra

arc from event i (i.e. the start node of ba) to the dummy end node of the project, as shown in figure

4. This extra arc has only one mode with duration = δn - t1 + 2 and a zero cost. Since we force to

start ba outside the range [t1, t2], the algorithm calculates a lower bound with the DTCTP procedure

without changing the duration of ba, i.e. x’ba = 8.

Figure 4. Start ba earlier than time period t1

Node 2. Event i must start later than t2

Similar to node 1 of the branch-and-bound tree, the algorithm now forces event i to start

later than the reported period t2. As illustrated in figure 5, this can be done by adding an extra arc

between the dummy start node of the project and event i. This single mode activity has a duration of

t2 + 2 with a zero cost. The duration of ba during the execution of the lower bound calculation

remains unchanged, i.e. x’ba = 8.

Figure 5. Start ba later than time period t2

i j
]t2, -[

 t2 + 2

Start

] -, t1[
 i j

δn – t1 + 2

End
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Node 3. Event i must start between t1 and t2

The third child node is somewhat different than the two previous nodes of the tree. In this

node the algorithm forces the branching activity to start in the time interval [t1, t2] by adding two

extra arcs as presented in figure 6. In fact, in the parent node of our branch-and-bound tree, the

lower bound procedure reported a starting time for ba between t1 and t2. The duration x’ba, however,

was too small since the lead time turned out to be larger. To that purpose, we alter the duration at

this node from x’ba = 8 to x’ba = 12 in our example. The two extra arcs (start, i) and (i, end) have a

zero cost and a duration of t1 and δn – t2, respectively.

Figure 6. Start ba between time periods t1 and t2

3.2.2 The branch-and-bound tree

As a result of the previous subsection, each parent node in our branch-and-bound tree has

three child nodes which differ from the parent node by the incorporation of one or two extra arcs

(see figure 7). B&B nodes can be frequently fathomed due to the incorporation of an arc in the

project network leading to infeasible solutions. Moreover, B&B nodes with a lower bound

exceeding the current upper bound of total project cost (initially set to ∞) can also be fathomed.

Otherwise, the algorithm continues with the node with the smallest lower bound. If the lower bound

solution reported by the DTCTP algorithm corresponds with a feasible solution, the upper bound is

updated. A feasible solution corresponds with a time-switch-schedule for which all activities are

scheduled in their mode as reported by the DTCTP procedure and for which the project duration is

smaller than or equal to the negotiated project deadline. If there are no nodes left unexplored at a

particular level, the algorithm backtracks to the previous level and continues with the remaining

unexplored node with the smallest lower bound. The algorithm stops when it backtracks to the

initial level of the branch-and-bound tree.

i j
[t1, t2]

 t1         δn – t2

EndStart
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Figure 7. The three different child nodes used in the branch-and-bound tree

3.2.3.  Reducing the number of nodes of the branch-and-bound tree

As previously described, the algorithm generates three child nodes at each level of the

branch-and-bound tree in which the allowable realization time of certain project event nodes has

been restricted. To that purpose, the algorithm calculates two time periods t1 and t2 and restricts the

range to ]-, t1[ for the first child node, ]t2, -[ for the second child node and [t1, t2] for the third child

node. In this section, we modify the allowable ranges ]-, t1[, [t1, t2] and ]t2, -[ to ]-, t1”], [t1’, t2’] and

[t2”, -[ such that t1” < t1 ≤ t1’ ≤ t2’ ≤ t2 < t2” (see figure 8). This modification leads to a decrease in

the number of nodes in the search tree. Moreover, it allows the algorithm to prune certain nodes of

the branch-and-bound tree.

Figure 8. Modification of the allowable ranges that determine nodes 1, 2 and 3 in the tree
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In order to modify the allowable ranges of the starting event i of a branching activity at each

level, we need to calculate two sets as a basis for our modifications. Therefore, FRi denotes the set

of possible realization times of event i by means of forward calculations (starting from time zero)

and BRi represents the set of possible realization times of event i by means of backward calculations

(starting from the project deadline). These two sets are simply the result of forward and backward

calculations of each event node in the network taking the time-switch constraints into account.

Consequently, the set FRj consists of all the possible finishing times of all arcs (i, j), i.e. the time-

switch finishing time for each possible duration and for each possible start time (as given by FRi).

Notice that these two sets might change along the exploration of the branch-and-bound tree due to

the incorporation of extra arcs.

In the remaining of this section, we discuss the modifications of the allowable ranges for the

three nodes at each level.

Node 3. Transformation of [t1, t2] to [t1’, t2’]

The two sets FRi and BRi can be used for the transformation of the interval [t1, t2] to the

interval [t1’, t2’] (with t1 ≤ t1’ ≤ t2’ ≤ t2) as follows: t1’ = minimum{zj| zj ≥ t1, zj ∈  FRi or zj ∈  BRi}

and t2’ = maximum{zj| zj ≤ t2, zj ∈  FRi or zj ∈  BRi}. Apart from a possible reduction in the total

number of nodes in the search tree, this transformation allows us to present a new dominance rule

for node 3 at each level.

Dominance rule: If the new range [t1’, t2’] has no time periods in common with FRi or BRi (i.e. [t1’,

t2’] ∩ FRi = ∅  or [t1’, t2’] ∩ BRi = ∅ ) then the exploration of the branch-and-bound node with

range [t1’, t2’] can be fathomed.

The logic of this dominance rule is that all possible schedules found by node 3 can also be

found by exploring either nodes 1 or 2. Indeed, when we force an activity to start later than t2’

during our branch-and-bound search, this does not imply that this activity cannot start earlier than

t2’ in the final optimal solution. Our branch-and-bound procedure is developed to select that mode

for each activity that leads to an optimal solution. In constructing the final schedule, given the

optimal mode combinations, we use a semi-active timetable in which the activity under study can

possibly start earlier than t2’. Consequently, the dominance rule boils down to the fact that set of

possible mode combinations of the problem by exploring node 3 is a subset of the set of possible

solutions by exploring either node 1 or node 2. Therefore, it can never be advantageous to explore
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both nodes 1 and 3 or nodes 2 and 3 is this case. This basic observation will be illustrated in detail

by means of the example of section 4 and the appendix.

In the following we discuss the transformations of nodes 1 and 2. Note that the

transformation of the allowable ranges at nodes 1 and 2 depend on the application of the dominance

rule.

Node 1. Transformation of ]-, t1[ to ]-, t1”]

The set FRi can be used for the transformation of the interval ]-, t1[ to the interval ]-, t1”]

(with t1” < t1) as follows: t1” = maximum{zj| zj < t1 and zj ∈  FRi}. In doing so, we restrict the

allowable range which leads to a possible reduction in the total number of nodes in the search tree.

Node 2. Transformation of ]t2, -[ to [t2”, -[

Both sets FRi and BRi can be used for the transformation of the interval ]t2, -[ to the interval

[t2”, -[ (with t2” > t2). The value of t2” depends on the application of the dominance rule described

earlier. A global overview is given in table 1.

Table 1. Possible transformations of ]t2, -[ to [t2”, -[ depending on the behaviour of range [t1’, t2’]

Node 3 Node 2

(a) [t1’, t2’] ∩ FRi = ∅  and [t1’, t2’] ∩ BRi

= ∅

t2” = max{min(zj|zj∈ FRi and zj>t2), min(zk| zk∈ BRi and

zk>t2)}

(b) [t1’, t2’] ∩ FRi ≠ ∅  and [t1’, t2’] ∩ BRi

= ∅

t2” = min{zj| zj∈ BRi and zj > t2}

(c) [t1’, t2’] ∩ FRi = ∅  and [t1’, t2’] ∩ BRi

≠ ∅

t2” = max{min(zj| zj∈ FRi and zj>t2), min(zk| zk∈ BRi and

zk>t2)}

(d) [t1’, t2’] ∩ FRi ≠ ∅  and [t1’, t2’] ∩ BRi

≠ ∅

t2” = max{min(zj| zj∈ FRi and zj>t2), min(zk| zk∈ BRi and

zk>t2)}

Remark that the dominance rule for node 3 can only be applied in cases (a), (b) and (c). The

transformation of t2 to t2” with t2” = max{min(zj|zj∈ FRi and zj>t2), min(zk| zk∈ BRi and zk>t2)} is

only valid for cases (a), (c) and (d). In case (b) we have to calculate the value of t2” in a different
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way since otherwise the optimal solution can be excluded of our search. In the appendix we

illustrate this with a small example.

4. A NUMERICAL EXAMPLE FOR THE DTCTPTSC

In this section we illustrate our new branch-and-bound algorithm for the discrete time/cost

trade-off problem with time-switch constraints by means of the example AoA network of

Vanhoucke et al. (2002a). In doing so, we are able to compare the branch-and-bound tree of both

approaches. This project is based on a real-life situation in which certain installations have to be

cleaned and contains 20 non-dummy activities (see figure 9.

Figure 9. The example project network of Vanhoucke et al. (2002a)

Each arc has been assigned a unique activity character. Dashed arcs are used to denote the

dummy arcs. Since this network is only for illustrative purposes, we only use two activity modes for

each activity, which are displayed near the arcs. Arc (1,6), for example, has a normal duration of 36

work periods and a corresponding cost of 2 or a crash duration of 2 work periods with a

corresponding cost of 12. Each activity follows one of the three patterns as described in table 2. We

assume that the project has to start on a Monday and the project deadline δn amounts to 143 time

units (or 286 work periods), which is the average of the earliest possible project finishing time (88

time units) and the latest allowable project finishing time (198 time units).
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Table 2. Details of the example project network of figure 9

The branch-and-bound solution

The branch-and-bound tree for the example is displayed in figure 11. The number in bold on

the first line denotes the number of each node in the branch-and-bound tree. The numbers on the

second line, separated by a slash, denote the lower bound on the total project cost and the project

duration with time-switch constraints in time units. A total project duration which is lower than or

equal to the deadline corresponds to a feasible node in the tree. The numbers below denote the

allowable range of project event i (starting event of the branching activity) due to the incorporation

of an extra arc at this node of the branch-and-bound tree.

As explained in previous sections, the variable xi denotes the duration of activity i in its

current mode. Moreover the variable x’i is used to denote the adapted duration of activity i which is

used as an input duration for the lower bound calculation by the procedure of Demeulemeester et al.

(1998) for the DTCTP. As an example, the normal durations of each activity at the initial node of

the tree are, due to the calculations of Eqs. [1]-[3], x’A = 18, x’B = 20, x’C = 48, x’D = 48, x’E = 0, x’F

= 16, x’G = 108, x’H = 32, x’I = 0, x’J = 38, x’K = 88, x’L = 0, x’M = 10, x’N = 38, x’O = 108, x’P = 76,

x’Q = 0, x’R = 48, x’S = 52, x’T = 46, x’U = 76, x’V = 0, x’W = 60, x’X = 0, x’Y = 0, x’Z = 20 and x’Γ =

76.

Act Arc Patter
n

Act Arc Patter
n

Act Arc Patter
n

A (1,2) dnw J (5,10) dnw S (10,11
)

d&n

B (1,4) dnw K (5,13) day T (11,12
)

d&n

C (1,6) d&n L (6,8) dummy U (12,15
)

day

D (2,3) d&n M (6,15) d&n V (12,16
)

dummy

E (2,8) dummy N (6,16) dnw W (13,14
)

day

F (3,5) dnw O (7,9) day X (14,15
)

dummy

G (4,7) day P (8,13) day Y (14,16
)

dummy

H (4,11) dnw Q (9,11) dummy Z (15,17
)

day

I (5,9) dummy R (9,12) d&n ΓΓΓΓ (16,17
)

day
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This set of durations is used as an input for the lower bound calculations at the initial node

of the tree. The corresponding lower bound on the total project cost amounts to 118 with a project

duration of 198 time units (this is the project duration for the DTCTPTSC and not the project

duration that results from the lower bound calculation). Since this project duration exceeds the

project deadline (δn = 143 time units), the algorithm identifies a branching activity ba for which its

lead time is larger than its duration x’ba. Activity C (arc (2,3)) is scheduled to start at work period 8

and consequently, its lead time (52 work periods) is larger than its duration x’B = 48 for that mode.

This lead time of 52 holds within the range [t1, t2] = [6, 10].

The set FR2 can simply be calculated by hand using forward calculations and equals {8, 18}.

The set BR2 = {8, 14, 16, …, 132, 134} (this is somewhat more difficult to see at a single glance).

Consequently, the restricted range [t1’, t2’] equals [8, 8] using the formulas as described in section

3.2.3. Since [t1’, t2’] ∩ FR2 ∩ BR2 ≠ ∅ , the algorithm cannot fathom node 3 of the branch-and-

bound tree. The range of node 4 equals [18, -[ according to section (d) of table 1. Node 2 can be

fathomed since it has no feasible solution. The algorithm chooses the node with the lowest lower

bound as the first branching node, i.e. node 3, to generate three new nodes at the next level of the

branch-and-bound tree. The branching activity of this node is W (arc (13, 14)) since this activity has

been scheduled on time period 150 (Saturday) with a lead time of 64, larger than its duration of 60

work periods. Since this branching activity can be used to illustrate the use of the dominance rule,

we illustrate the schedule of this arc in figure 10.

Figure 10. Possible schedules of a branching activity for the example network

The lead times of (a), (b), (c) and (d) are 60, 64, 64 and 62, respectively. Consequently, the

allowable range [t1, t2] equals [148, 150]. Moreover, forward and backward time-switch calculations

reveal that FR13 = {94, 102, 108, 116, 128, 146, 150, 160, 164} and BR13 = {146, 170, 202, 226}.

Taken this information into account, the allowable ranges of nodes 5, 6 and 7 of the branch-and-

bound tree are given by ]-, 146], [150, 150] and [170, -[, respectively. Since [150, 150] ∩ FR13 ∩

…

…
…

…

(a)
(b)

(c)
(d)

146        148        150       152        154        156        158                     204         206       208        210        212        214

Sat
d    n

Sun
d    n

Mon
d    n

Fri
d    n

  Thu
d    n

Tue
d    n

Sun
d    n

Mon
d    n

Fri
d    n

Sat
d    n

Tue
d    n
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BR13 = ∅ , the algorithm fathoms node 6 of the search tree. Indeed, all possible solutions to the

problem to be found by node 6 will also be found by node 7 of the search tree (section (b) of table

1).

Notice also that the algorithm has found feasible project duration for the very first time at

node 5 of the tree (with a feasible project duration of 143 time units). The upper bound ub (initially

set to ∞) is updated as follows: ub = 133 and consequently, from this point forward, there is no need

to explore nodes with a lower bound larger than 133. The algorithm backtracks when there are no

nodes left unexplored at a particular level and continues at the previous level of the search tree. The

algorithm continues this way until it returns to the initial node of the search tree.

The optimal solution is reported by the node with the lowest upper bound ub, which is found

in node 7 of the search tree. The optimal cost of the project with a deadline δn = 143 time units

amounts to 125.

Figure 11. The branch-and-bound tree of the DVH procedure (left) and the new procedure (right)
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5. COMPUTATIONAL EXPERIENCE

In order to test the efficiency of our new branch-and-bound procedures for the DTCTPTSC,

we have coded it in Visual C++ version 6.0 under Windows 2000 on a Dell personal computer with

a Pentium III, 800 MHz processor. We have used two main problem sets. The first subset is the

testset used in Vanhoucke et al. (2002a) and is used to compare our new algorithm with the VDH

procedure. The second set is extension of this set to larger problem instances and is used to illustrate

that our new branch-and-bound procedure can solve problems which seemed to be too complex for

the VDH procedure. Both testsets are subsets of the dataset used for the computational results of the

procedure by Demeulemeester et al. (1998).

5.1. Problem set I.

Table 3 illustrates the characteristics of problem set I and is a copy of the dataset used in

Vanhoucke et al. (2002a). This testset is a subset of the problem set generated by Demeulemeester

et al. (1998) in which the authors have generated activity-on-the-node networks with different

values for the coefficient of network complexity CNC with the problem generator ProGen (Kolisch

et al. (1995)). After this generation, the authors have transformed the networks into an AoA format

using the algorithm of Kamburowski et al. (1992). According to the table, we use different settings

for the number of modes of each activity, five settings for the deadline of the project and ten

settings for the pattern of each network. Using 10 instances for each problem class, we obtain a

problem set with 12,000 test instances. The project deadline δn is set to a value between the smallest

critical path length (all activities at their crash duration) and the largest critical path length (all

activities at their normal duration). The project deadline δn is then equal to the smallest critical path

length exceeded with k times the difference between the largest and the smallest critical path

lengths. The settings for the pattern, either day, d&n or dnw, of each activity varies as follows: [%

of activities following a day-pattern, % of activities following a d&n-pattern, % of activities

following a dnw-pattern].
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Table 3. Parameter settings used to generate the test instances for the DTCTPTSC

In table 4 we compare the computational results for the DVH procedure with our new

branch-and-bound algorithm. To that purpose, we display the average CPU-time in seconds and the

average number of nodes in the branch-and-bound tree for solving the DTCTPTSC to optimality and

we use the same computer as for the DVH procedure. The number of nodes in the search tree

denotes the number of times a lower bound has been calculated using the procedure of

Demeulemeester et al. (1998).

The row label ‘all instances’ gives the average results over all 12,000 problem instances and

illustrates that our new branch-and-bound procedure clearly outperforms the DVH procedure. Our

new procedure is, on the average, four times faster and uses seven times less nodes in the branch-

and-bound tree. Consequently, the time spent per node is slightly higher in our new procedure. This

is the extra time spent on the calculation of the periods t1 and t2 and the sets FRi and BRi.

In the remaining rows we show more detailed results and illustrate a lot of resemblance

between the two procedures.

For the rows labelled ‘number of activities’, ‘number of modes’, ‘CNC’ and ‘pattern’, the

results correspond with the DVH procedure and are extensively described in this paper. Indeed, the

larger the number of activities, the more difficult the problem. The negative effect of the number of

modes is also quite clear, with the observation that a fixed number of modes is more difficult to

solve than the instances where the number of modes is randomly selected. This was already

observed for the DTCTP in Demeulemeester et al. (1998). The effect is the CNC is not so clear in

both procedures. It has already been shown extensively  in literature that the CNC is not a good

measure to predict the difficulty of project scheduling problems (see e.g. Elmaghraby and Herroelen

(1980), De Reyck and Herroelen (1996), Herroelen and De Reyck (1999) and Vanhoucke et al.

(2002b)). The row labelled ‘pattern’ illustrates the simplicity of the problem when all arcs follow a

ACTIVITY-ON-THE-ARC PROJECT SCHEDULING PROBLEMS GENERATED BY PROGEN
12,000 instances

Number of activities (nondummy arcs) 10, 20 or 30
Number of modes Fixed at 2 or 4 or randomly chosen from

the interval [1,3] or [1,7] for the 10-
activity networks and fixed at 2 or
randomly chosen from the interval [1,3]
for the 20- and 30-activity networks

Coefficient of network complexity CNC 1.5; 1.8 or 2.1
Pattern
       [%day-pattern, %d&n-pattern,%dnw-
pattern]

[0,0,100], [0,33,66], [0,66,33], [0,100,0],
[33,0,66], [33,33,33], [33,66,0], [66,0,33],
[66,33, 0], [100,0,0],

Constant k for the deadline setting of the
project

0, 0.25, 0.50, 0.75 or 1
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dnw-pattern since then the problem is identical to the DTCTP. In all other cases the problem

instances are more difficult to solve.

The last results in the row labelled ‘deadline’ indicate the effect of the project deadline on

the problem complexity and is the most interesting one in our comparison of the two procedures.

Instances with a project deadline equal to the largest critical path length are denoted with k = 1 and

are very easy to solve. The larger the project deadline, the larger the value of k is. Consequently,

problem instances solved by the DVH procedure for which k = 0 are the most difficult. Indeed, the

DVH procedure starts with a schedule for which all activities are scheduled at their normal mode

and iteratively crashes activities during the search of the tree. The closer the deadline to the minimal

critical path length, the more activities need to be crashed. Our new branch-and-bound procedure

also reveals a negative correlation between the project deadline and the problem complexity, i.e. the

larger the project deadline (i.e. the larger k), the more easy the problem. But in contrast with the

DVH procedure, the new algorithm does not report the largest CPU times for instances with k = 0.

This is simply because our new procedure does not start with a schedule for which all activities are

at their normal duration. Instead, we simply calculate a lower bound at each node of the search tree

and split the possible starting time of a chosen branching activity into three parts.

Table 4.

Insert Table 4 About Here

5.2. Problem set II.

Problem set II is similar to problem set I, except for the number of modes for each activity.

Instead of restricting the number of modes for the different projects, we now set the modes fixed at

2 or 4 or we randomly choose the modes from the interval [1,3] or [1,7]. Consequently, problem set

II contains 18,000 instances and allows us to solve e.g. 30 activity projects for which some

activities have up to 7 modes. The DVH procedure was not able to solve these large problem

instances since the authors conclude that “problem instances with 20 or 30 activities and 4 or more

modes are very difficult to solve and therefore, we have to rely on heuristic procedures”.

Table 5.

Insert Table 5 About Here

In table 5 we report detailed results of our computational tests. The first row of this table has

a similar lay-out as table 4 and needs no extra explanation. Rows 2 and 3 report the average CPU

time and the number of created nodes needed to solve the problem instances to optimality. To that
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end, we do not use any time limit on the CPU time and we rely on the dominance rule of section

3.2.3 to solve all the instances. In rows 4 and 5 we test the performance of the dominance rule by

reporting the average CPU time within a maximum allowed CPU time of 1 minute. Row 4 is similar

to row 2, except for the time limit of 60 seconds. In row 5 we solve the same problem set without

the use of our dominance rules.

The computational results indicate that instances with 30 activities can be solved in – on the

average - less than 7 seconds. Therefore, the algorithm needs to rely 154 times on the procedure of

Demeulemeester et al. (1998). The CPU-times of the individual parameters (pattern, number of

activities, number of modes, deadline) correspond to the results of table 4. However, it is worth

notifying that the CNC is positively correlated with the difficulty of the problem instances. The

table also reveals that our dominance rule is very efficient: the average CPU time is – on the

average – 4.5 times lower with the dominance rule, as observed by comparing rows 4 and 5.

6. CONCLUSIONS

In this paper we presented a new branch-and-bound algorithm for the discrete time/cost

trade-off problem with time-switch constraints. The discrete time/cost trade-offs mean that the

duration of each activity is a discrete, nonincreasing function of the amount of a single

nonrenewable resource. The time-switch constraints impose a specified starting time on the project

activities and force them to be inactive during specified time periods.

The problem type is based on a real-life project and has been introduced in the paper by

Vanhoucke et al. (2002a). Our new branch-and-bound procedure makes use of a completely new

branching strategy and outperforms the previous algorithm. In doing so, we are able to optimally

solve larger, real-life project instances. In our future research, we will search for real-life projects in

which time/switch constraints are inevitable and extend this problem type with additional features

in order to further tighten the gap between the project literature and real-life project management.

Solving this problem with heuristic solution methods also belongs to our future intentions.
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APPENDIX

In this appendix we explain table 1 of section 3.2.3 by means of three simple projects

illustrations. In each of the cases below, we assume that the start of the project equals Wednesday

(time zero) with a project deadline of 16 work periods (see figure 12). Moreover, we always assume

that the lower bound calculation has reported a schedule in which activity (1,2) takes 8 work

periods and in which activity (2,3) is the selected branching activity (with a time range [t1, t2] = [8,

8] in all cases).

Figure 12. Time window for the project example

Case (a)

It is easy to see on figure 13 that FR2 = {2, 12} and BR2 = {4, 10, 14}. Since [8, 8] ∩ FR2 =

∅  and [8, 8] ∩ BR2 = ∅ , we follow case (a) of table 1. Therefore, we fathom node 3 of the branch-

and-bound tree and use ]-, 2] and [12, -[ for node 2. Indeed, it is not necessary to explore node 2

with a time range [10, -[ since then we have an overlap between node 1 and node 2. Consequently,

the possibility that activity (2, 3) is scheduled at a duration of 6 can be excluded of node 2 since this

in incorporated in the exploration of node 1.

Figure 13. Project example for case (a)
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Case (b)

In the example network of figure 14, FR2 = {2, 8, 12} and BR2 = {4, 10, 14} and [8, 8] ∩

FR2 ≠ ∅  and [8, 8] ∩ BR2 = ∅ . According to table 1, we can fathom node 3 and use time ranges of

nodes 1 and 2 of ]-, 2] and [10, -[, respectively. In this case, it is really necessary to explore node 2

with a time range [10, -[ instead of [12, -[ since otherwise, we exclude the possible solution in

which activity (1, 2) is scheduled at duration 8 and activity (2, 3) is scheduled at duration 6.

Figure 14. Project example for case (b)

Case (c)

The example network of figure 15 reveals that FR2 = {2, 12} and BR2 = {8, 10, 12, 14} and

[8, 8] ∩ FR2 = ∅  and [8, 8] ∩ BR2 ≠ ∅ . According to table 1, we can fathom node 3 and use time

ranges of nodes 1 and 2 of ]-, 2] and [12, -[, respectively. For a similar reason of case (a), we do not

need to investigate node 2 with range [10, -[, since this has been incorporated in node 1.

Figure 15. Project example for case (c)

Case (d)

In this case, we do not fathom node 3.
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TABLE 4
A comparison of the average CPU-time and number of created nodes in the branch-and-

bound tree
between our new branch-and-bound procedure and the algorithm by Vanhoucke et al.

(2002a) for problem set I

Average CPU time (seconds) Average number of nodes
in the search tree

VDH (2002) Current paper VDH (2002) Current paper
All instances 0.119 0.027 88.718 11.242
Number of
activities

10
20
30

0.006
0.016
0.449

0.003
0.010
0.089

25.325
26.899
277.321

2.578
8.366
31.444

Number of modes
(10 activities)

2
4

[1,3]
[1,7]

(20 and 30
activities)

2
[1,3]

0.001
0.022
0.001
0.001

0.415
0.051

0.003
0.005
0.003
0.003

0.080
0.021

1.701
95.437
1.442
2.718

251.861
52.359

1.953
4.353
2.142
1.865

24.190
13.728

CNC
1.5
1.8
2.1

0.081
0.146
0.133

0.024
0.021
0.036

98.447
92.189
75.516

11.367
9.004
11.935

Pattern
[0,0,100]
[0,33,66]
[0,66,33]
[0,100,0]
[33,0,66]
[33,33,33]
[33,66,0]
[66,0,33]
[66,33, 0]
[100,0,0]

0.002
0.092
0.324
0.274
0.021
0.061
0.077
0.051
0.133
0.161

0.004
0.006
0.026
0.066
0.005
0.020
0.060
0.016
0.032
0.035

1.000
50.373
146.487
204.304
22.430
93.446
92.784
50.287
115.203
111.858

1.000
2.669
12.913
28.497
2.059
7.520
20.081
6.784
13.763
12.403

Deadline
k = 0

k = 0.25
k = 0.50
k = 0.75

k = 1

0.529
0.062
0.004
0.002
0.001

0.040
0.059
0.023
0.009
0.003

408.275
28.625
5.451
1.235
1.000

12.395
20.404
12.285
7.760
1.000
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TABLE 5.

Computational results for our new branch-and-bound procedure for problem set II

Average CPU
time

(seconds)
(no time limit)

Average
number of

nodes in the
search tree

(no time limit)

Average CPU
time

(seconds)
(time limit 1

minute)

Average CPU
time

(seconds)
(time limit 1

minute)
With

dominance rule
With

dominance rule
With

dominance rule
Without

dominance rule
All instances 2.209 60.189 0.942 4.339
Number of
activities

10
20
30

0.003
0.089
6.535

2.579
23.466
154.524

0.003
0.089
2.733

0.004
1.507
11.506

Number of modes
2
4

[1,3]
[1,7]

0.044
5.133
0.012
3.646

17.860
132.345
10.050
80.503

0.044
2.283
0.012
1.427

2.195
7.676
1.825
5.660

CNC
1.5
1.8
2.1

1.032
1.695
3.901

45.555
53.295
81.718

0.577
0.781
1.467

3.647
3.742
5.628

Pattern
[0,0,100]
[0,33,66]
[0,66,33]
[0,100,0]
[33,0,66]
[33,33,33]
[33,66,0]
[66,0,33]
[66,33, 0]
[100,0,0]

0.007
0.110
2.954
7.773
0.051
0.594
2.295
1.930
3.392
2.984

1.000
5.352
74.144
176.624
3.958
28.577
99.119
35.023
98.836
79.260

0.007
0.110
1.233
2.595
0.051
0.519
1.478
0.613
1.513
1.298

0.007
0.221
4.573
10.666
0.116
2.566
8.292
3.189
7.103
6.656

Deadline
k = 0

k = 0.25
k = 0.50
k = 0.75

k = 1

1.947
6.992
2.046
0.056
0.003

49.147
138.296
86.656
25.848
1.000

1.185
2.602
0.861
0.056
0.003

7.330
7.728
4.657
1.976
0.003
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