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ABSTRACT 

In this paper, we propose different complexity indicators for the well-known nurse 

scheduling problem (NSP). The NSP assigns nurses to shifts per day taking both hard and 

soft constraints into account. The objective is to maximize the nurses’ preferences and to 

minimize the total penalty cost from violations of the soft constraints. The problem is 

known to be NP-hard. 

Due to its complexity and relevance in practice, the operations research literature has been 

overwhelmed by different procedures to solve the problem. The complexity has resulted in 

the development of several (meta-)heuristic procedures, able to solve a NSP instance 

heuristically in an acceptable time limit. The practical relevance has resulted in a never-

ending amount of different NSP versions, taking practical, case-specific constraints into 

account. 

The contribution of this paper is threefold. First, we describe our complexity indicators to 

characterize a nurse scheduling problem instance. Secondly, we develop a NSP generator to 

generate benchmark instances to facilitate the evaluation of existing and future research 

techniques. Finally, we perform some preliminary tests on a simple IP model to illustrate 

that the proposed indicators can be used as predictors of problem complexity.  

 

Keywords: Nurse scheduling; Benchmark instances; Problem classification 
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1. INTRODUCTION 

The nurse scheduling problem (NSP) is a well-known combinatorial optimization 

problem in literature and has attracted numerous researchers to develop exact and (meta-) 

heuristic procedures. The NSP involves the construction of duty rosters for nursing staff 

and assigns the nurses to shifts per day taking both hard and soft constraints into account. 

The objective maximizes the preferences of the nurses and minimizes the total penalty cost 

from violations of the soft constraints. The problem is known to be NP-hard (Osogami and 

Imai, 2000). 

Despite the numerous procedures for the NSP, no state-of-the art results have been 

presented in literature. The main reason is that comparison between procedures is very 

difficult, since problem descriptions and models vary drastically and depend on the need of 

the particular hospital. Due to the huge variety of hard and soft constraints, and the several 

objective function possibilities, the nurse scheduling problem has a multitude of 

representations, and hence, a wide variety of solution procedures has overwhelmed the 

optimization literature. The comparison is further hindered by the lack of benchmark 

problem instances and the unavailability of source code of the different procedures. 

Moreover, there is no general agreement on how to evaluate and compare procedures in 

terms of solution comparison, stop criterion, etc…. Consequently, a fair comparison 

between procedures seems to be an impossible idea, which undoubtedly limits the efficient 

development of future algorithms. 

In their overview papers, Cheang et al (2003) and Burke et al (2004) express the 

need for a benchmark database to facilitate comparison of the various algorithms and to 

motivate future researchers to develop better solution procedures for the NSP. In this paper, 

we come towards this need of benchmarking in several ways. 

The outline of the paper is as follows. In the next section, we briefly review the use 

of hard and soft constraints applicable to nurse scheduling problems. Section 3 presents the 

complexity indicators for the NSP that are used as a base for the problem instance generator 

(NSPGen). In section 4 we present our generation approach to generate problem instances 

under a controlled design. In section 5, we report the relevance of these indicators by 

computational results on a simple IP model. A decision tree has been constructed to 
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distinguish groups of data instances based on known input parameters. Section 6 draws 

overall conclusions and suggestions for future research avenues. 

 

2. THE NSP UNDER DIFFERENT ASSUMPTIONS 

The basic nurse scheduling problem (NSP) can be stated as follows. A set of nurses 

needs to be scheduled within a pre-defined period (e.g. a week). In doing so, these nurses 

need to be assigned to one of a number of possible shifts in order to meet the minimal 

coverage constraints and other case-specific constraints and to maximize the quality of 

assigned working shifts. According to Warner (1976), quantifying preferences in the 

objective function maintains fairness in scheduling nurses over the scheduling horizon. 

Hence, the quality of a schedule is a subjective judgment of the nurses depending on how 

well the assigned schedule is conform to his/her desires to be off or on duty and to other 

schedule properties such as work stretch, rotation patterns, etc…. The coverage constraints 

determine the required nurses per shift and per day, and are inherent to each NSP instance. 

However, many other constraints are very case-specific, and are determined by personal 

time requirements, specific workplace conditions, national legislation, etc…. The majority 

of these extra constraints can be handled as hard constraints, for which no violation is 

possible whatsoever, or as soft constraints, which can be violated at a certain penalty cost. 

In their literature survey, Cheang et al (2003) present an overview of constraint types as 

appearing frequently in the literature. In the remainder of our paper, we propose different 

complexity indicators to describe a NSP instance. More precisely, these indicators describe 

a two-dimensional nurse/day preference roster and the corresponding coverage 

requirements, which are both inherent to any NSP instance. We assume a nurse scheduling 

problem where each nurse i can express its preference to work on day j in shift k as pijk. We 

opt for this general approach to express the preference or aversion of nurses to work on a 

shift/day, and hence, ignore some very case-specific preference structures, such as 

sequence-dependent preferences. We believe, however, that most nurse scheduling 

problems can be modelled by using our general preference matrix. The required number of 

nurses (coverage requirements) on day j for shift k can be denoted by rjk.  



 6 

The objective is to schedule the nurses for the complete period, such that the 

coverage requirements are met and the total sum of nurses’ preferences and the penalty 

costs of soft constraints violations are minimized. 

 

3. NSP GENERATION 

In this section, we present three classes of complexity indicators in order to generate 

NSP instances under a controlled design. These complexity indicators should span the full 

range of problem complexity and should have sufficient discriminatory power to serve as 

predictors for the complexity of the problem under study (Elmaghraby and Herroelen, 

1980). Hence, it allows the generation of instances with pre-defined values for the 

complexity indicators to predict the difficulty of a particular NSP instance for a particular 

solution procedure. Therefore, different sets with different combinations of the indicators 

can discriminate between easy and hard instances and these indicators can act as predictors 

of the computational effort of the procedures that have been developed. The CPU-time that 

a solution procedure needs to solve a particular problem instance to optimality can typically 

be used to describe the hardness of this problem instance for the particular solution 

procedure. Hence, the comparison of procedures and good predictions of their required 

CPU-time allow the a priori selection of the fastest solution procedure, based on the simple 

calculation of the indicators. The complexity indicators are therefore indispensable in the 

construction of problem sets that span the complete range of complexity of important 

problem characteristics.  

Insert Table 1 about here 

The three classes of proposed complexity indicators to generate a NSP instance 

measure the size of the problem instance, the preference structure of the nurses and the 

coverage requirements of the schedule. Table 1 serves as a guideline to following sections, 

where the three classes of indicators will be explained into detail. 
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3.1. Problem size 

The size of the NSP instance under study depends on the size of the duty roster 

matrix. Consequently, the three complexity indicators describing the size of the problem 

can be defined as:  

 

N = number of nurses 

S = number of shifts 

D = number of days 

 

These three input parameters will be used to describe the two following classes of 

complexity indicators. The preferences have to be expressed by each nurse, for each shift of 

all days (see section 3.2). The coverage requirements need to be given for all shifts of all 

days (see section 3.3). 

 

3.2. Preferences 

The preference structure of the nurses consists of three input parameters. First, the 

preference distribution over all nurses (for each shift and for each day) needs to be 

determined by the nurse-preference distribution. Second, these preferences need to be 

distributed among all shifts of a single day, denoted by the shift-preference distribution. 

Last, the preference distribution for all days of the complete scheduling period needs to be 

determined, referred to as the day-preference distribution. In doing so, we have full control 

on the complete preference distribution for all nurses for each shift on each day. 

 

3.2.1. Nurse-preference distribution (NPD) 

We assume that a shift/day preference can be expressed by nurses as a ranking 

among shifts. More precisely, each nurse can rank each possible working shift of the day, 

such that the maximal number of different preference values equals the number of shifts S. 

In doing so, each nurse expresses his/her desire to work on that particular shift by assigning 

a number between 1 (very desirable) and S (very undesirable). The NPD measures the 

distribution of the preferences over all nurses for a particular shift on a particular day. In the 

remainder of this section, we explain the calculation of the NPD measure for a particular 
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shift k of a particular day j. Although the NPD value can differ for each shift of each day, 

we assume that the nurse-preference distribution is equal for all shifts and all days. 

 

We introduce an auxiliary variable to measure the number of times an identical 

preference value l (l = 1, …, S), has been selected for a particular shift and day among the 

nurses, as follows: 

 

yil =  1, if nurse i prefers choice l (for a particular shift on a particular day) 

 0, otherwise 

 

and hence, 


N

i

ily
1

 denotes the number of times a ranking value l has been selected 

by all the nurses for a particular shift/day. 

NPD  [0, 1] can be calculated as 
NPD

S

l

N

i

il

NPD

NPD

w

SNy

NPD
max

1 1

max

/





 



 .  

 

Consequently, NPD

w  measures the total absolute deviation of all 


N

i

ily
1

-values for 

each preference l from the average number of each preference, i.e. N / S. Indeed, since the 

total number of different preferences equals S, each preference will be selected N / S times, 

on the average. Moreover, NPD

max  is used to denote the maximal possible value of NPD

w . By 

dividing NPD

w  by NPD

max , we make sure that NPD lies between zero and one, inclusive. The 

value for NPD

max  depends on the maximal allowable value for 


N

i

ily
1

 which is equal to N, and 

can be expressed as 
S

N
N

2
2  . For more information, we refer to appendix A. In this 

appendix, we show that our variance measure 
NPD

NPD

w

max


 is a general measure for the 

distribution of any parameter which will also be used in this paper to describe other 

complexity indicators. It has been proposed by Vanhoucke et al (2004) for the generation of 
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project networks and has been adapted by Labro and Vanhoucke (2005) to design general 

costing systems for management accounting. 

The NPD measures whether the preference structure is distributed equally over the 

nurses (there is no clear preference among the nurses for this particular shift, or NPD = 0) 

or shows a clear pattern for one preference (all nurses have the same ranking value for that 

shift, or NPD = 1). In table 2, we display three different NPD values for three shifts (k = 1, 

2 or 3) and 15 nurses. As an example, NPD1 = (|13 – 5| + |1 – 5| + |1 – 5|) / (2 * 15 – (2 * 15 

/ 3)) = 0.80, denoting that the majority of nurses (13) have shift 1 as their first choice (and 1 

nurse as the second choice and 1 nurse as the last choice). The NPD only measures the 

distribution of preferences among nurses, but does not assign the individual preferences of 

the generated distribution to particular shifts of a particular day. The shift-preference 

distribution indicator of section 3.2.2 and the day-preference distribution indicator of 

section 3.2.3 assigns the individual preferences among shifts and days, respectively. As an 

example, table 3 displays a preference matrix for which the NPD-values equal 0.80 for the 

first shift of each day, 0.50 for the second shift of each day and 0.20 for the third shift of 

each day. 

Insert Table 2 about here 

3.2.2. Shift-preference distribution (SPD) 

The NPD measures the distribution of the preferences l (expressed as a ranking 

value between 1 and S) among nurses, but does not assign the individual preference values 

to individual nurses to express his/her desire to work on that shift of that day. The SPD 

assigns these preferences to nurses and measures the distribution of these preferences over 

all shifts of a single day. Although the SPD value can differ for each day, we assume that 

the shift-preference distribution is equal for all days over the complete scheduling horizon. 

 

SPD  [0, 1] can be calculated as 
NS

N

SPD

N

i

SPD

i

)1(

1








 . 



 10 

SPD

i  measures the number of different preference values for nurse i over all shifts k 

of a particular day. Using P as a temporary set for preference ranking values, SPD

i  can be 

calculated for each nurse i as follows: 

SPD

i  = 0 

P =  

for k = 1, …, S 

 if (pijk  P) then  

  SPD

i  = SPD

i  + 1 

  P = P  pijk 

 

where pijk–values can vary between 1 and S.  

 

A minimal value for SPD

i  equals 1 when nurse i expresses no clear preference 

among the shifts (and hence, assigns a similar preference value to each shift of the day to 

express indifference among shifts). The maximal value for SPD

i  equals S and means that 

nurse i has a clear ranking between each shift on a day. Consequently, the maximal value 

for 



N

i

SPD

i

1

 equals SN and minimal value equals N and the SPD always lies between zero 

and one, inclusive. The SPD measures the preference structure over all shifts within a day 

and equals 0 if all nurses express indifference between the shifts and equals 1 if each nurse 

expresses a preference ranking among the individual shifts. As an example, table 3 displays 

the four-days preference matrix with a SPD-value equal to 0.2 for day 1, 0.4 for day 2, 0.6 

for day 3 and 0.8 for the last day. Note that the NPD equals 0.8, 0.5 or 0.2 for the first, 

second or third shift, respectively, for each day. 

 

3.2.3. Day-preference distribution (DPD) 

 

The SPD of previous section can be applied to each day of the complete scheduling 

period in order to control the preference structure over all shifts of each day. In order to 
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control the preference structure over all days of the complete scheduling period, an 

indicator to measure the day-preference distribution is necessary. 

 

The DPD indicator is similar to the SPD, but measures the distribution of the 

preferences over all days, instead of a single-day distribution over all shifts. In analogy with 

SPD

i , DPD

ik  measures the number of different preference values for nurse i on shift k over 

all days.  

 

DPD  [0, 1] can be calculated as 
NSS

NS

DPD

N

i

S

k

DPD

ik

)1(

1 1








  . 

 

Since the maximal value for 
 


N

i

S

k

DPD

ik

1 1

 equals SSN and minimal value equals SN, 

the DPD always lies between zero and one, inclusive. When DPD equals 0, then all nurses 

have expressed a similar preference or aversion for similar shifts over all days. On the other 

hand, DPD equals 1 when each nurse has assigned a different preference value for similar 

shifts over the days (i.e. the nurses have clearly a day-dependent preference for each shift). 

The DPD-value for table 3 equals 0.70. 

 

In order to clarify the different indicators, we have displayed some extreme 

preference structures measured by the three preference distribution measures in appendix B. 

 

3.3. Coverage constraints 

The coverage requirements, expressed as the required number of nurses on day j for 

shift k, will be expressed as rjk. Furthermore, we use 
S

r

r

S

k

jk

j


 1  to denote the average 

number of nurses required per shift on day j and 
D

r

r

D

j

S

k

jk
 


1 1

 to denote the average 
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number of nurses required per day. The coverage requirements of the nurse scheduling 

problem can be generated by means of three input parameters as follows. In a first step, the 

total number of required nurses will be generated which has a major influence on the 

constrainedness and hence on the feasibility of the NSP instance. In a second step, the total 

number of required nurses will be distributed among the days (day-coverage) and the shifts 

per day (shift-coverage).  

 

3.3.1. Total-coverage constrainedness (TCC) 

The TCC serves as an indicator to generate the total number of nurses required for 

the complete scheduling period (e.g. a week). The required number of nurses (i.e. the 

coverage requirements) as well as the different case-specific constraints have a major 

influence on the feasibility of the NSP instance under study. An NSP instance with only the 

coverage requirement constraints has a feasible schedule when the total daily coverage is 

lower than or equal to the number of nurses. Hence, the maximal allowable daily coverage 

is equal to the number of nurses in the instance, and higher coverage values will lead to 

infeasible solutions. However, the feasibility can no longer be guaranteed when the NSP 

instance is subject to additional constraints. For these instances, the total coverage needs to 

be decreased (lower than the number of nurses) and, therefore, can only be a fraction of the 

maximal coverage. Note that Koop (1988) has discussed lower bounds for the workforce 

size on the multiple shift manpower scheduling problem by taking both the minimal 

number of required working shifts (i.e. the coverage constraints) as well as other case-

specific constraints into account.  

 

The TCC  [0, 1] can be calculated as 
N

r

ND

r

TCC

D

j

S

k

jk




 1 1

. 

 

The total-coverage constrainedness (TCC) is measured as the average number of 

nurses required per day divided by the number of nurses. The TCC is measured as a fraction 

of the maximal coverage requirements (when the TCC = 1, the total daily coverage equals 

the number of nurses). When the NSP instance is the subject to additional constraints, the 
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TCC needs to be lower than or equal to 1 to guarantee feasibility. The TCC value of table 3 

equals (3 + 3 + 3 + 1 + 2 + 3 + 4 + 1 + 1 + 0 + 9 + 0) / (15 * 4) = 0.5. 

 

3.3.2. Day-coverage distribution (DCD) 

The TCC determines the total coverage requirement for the complete scheduling 

period but does not assign requirements to individual days or shifts. The DCD divides the 

total coverage requirement (obtained by the TCC measure) among days in a controlled way 

as follows:  

 

DCD

D

j

S

k

jk

DCD

DCD

w

rr

DCD
max

1 1

max 



 



  

 

The DCD is similar to the SPD indicator as explained in appendix A. DCD

w  

measures the total absolute deviation of a one-day coverage 


S

k

jkr
1

 from the total average 

coverage requirement over all days. Moreover, DCD

max  is used to denote the maximal 

possible value of DCD

w . Similar to the SPD indicator of section 3.2.1, we divide DCD

w  by 

DCD

max  to make sure that DCD lies between zero and one, inclusive. The value for DCD

max  

depends on the maximal allowable value for 


S

k

jkr
1

 (which is equal to N) and is equal to 

      rNrDDr
N

rD
rN 








 mod)1(2  (see appendix A). 

 

DCD measures whether the daily coverage is distributed equally over all days, and 

does not measure the intra-day coverage requirement over the shifts. When DCD is equal to 

0, the coverage requirements are equally distributed among all days. When DCD equals 1, 

the coverage requirements are maximal for one or several days (depending on the TCC 

value), and zero for all remaining days. The DCD value of table 3 equals DCD = (|9 – 7.5| + 
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|6 – 7.5| + |6 – 7.5| + |9 – 7.5|) / ((15 – 15) * 








15

5.7*4
– 7.5 * (1-4) + |(4 * 7.5)mod(15) – 

7.5|) = 6 / 30 = 0.2. 

 

3.3.3. Shift-coverage distribution (SCD) 

While the DCD measures the daily coverage distribution over the complete 

scheduling problem, the SCD does the same, on a shift level. More precisely, the SCD 

measures the distribution of the coverage requirements over all shifts for a particular day j. 

Although the SCD indicator can differ per day, we assume that the shift-coverage 

distribution is equal for all days. 

 

The SCD  [0, 1] can be calculated as 
SCD

S

k

jjk

SCD

SCD

w

rr

SCD
max

1

max 

 




 . 

 

Similar to SPD and DCD, SCD

w  measures, for a given day j, the total absolute 

deviation of all shift coverage requirements rjk from the total average coverage requirement 

of that day (which is a result of the DCD calculations). SCD

max  is used to denote the maximal 

possible value of SCD

w  and depends on the maximal allowable value for jkr . This maximal 

value equals N, and can never be exceeded since the DCD calculations guaranteed that 

Nr
S

k

jk 
1

. Therefore, no explicit upper value needs to be taken into consideration, and 

SCD

max  can be – according to appendix A – calculated as jj rrS 22  . When SCD equals 0, 

the coverage requirements for a single day are equally distributed. When SCD equals 1, 

there is a single shift with a given coverage requirement (determined by the DCD 

indicator), while all other shifts on that day do not need nurses. The SCD values of table 3 

equal 0, 0.25, 0.5 and 1 for day 1, 2, 3 and 4. 
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4. THE GENERATION PROCESS OF THE NSP INSTANCE GENERATOR 

NSPGEN 

In this section, we describe a simple but efficient way to generate NSP instances 

with given values for the 9 indicators of section 3. In the remainder of this section, we refer 

to a ‘shift vector’ to denote one column of a preference matrix as shown in table 3. 

Moreover, we refer to a day matrix (week matrix) to denote a combination of shift vectors 

for a complete day (week). We describe our generation approach for weekly preference 

matrices, but it can easily be extended, without loss of generality, to larger scheduling 

periods. 

The generation process boils down to the combination of randomly generated shift 

vectors with a pre-specified NPD value in order to obtain a preference structure with known 

values for all the indicators. This process is followed by an improvement step, until a pre-

specified value for SPD and DPD is obtained. The pseudo-code to generate periodically 

(e.g. weekly) preference matrices with a given value for NPD, SPD and DPD (denoted as 

NPD’, SPD’ and DPD’) is given below.  

 

Procedure Generate instance (NPD’, SPD’, DPD’) 

Initialize d1 = 0 

Step 1. Construct NPD’ shift vectors 

Randomly generate C1 shift vectors with NPD’-value 

Step 2. Construct D1 SPD’ day matrices 

Select randomly one shift vector c1 from the C1 vectors 
Construct a day matrix with SPD = 0 (i.e. all shifts equal c1) 

Set SPDold = 0 

For k = 2 to S 

For c2 = 1 to C1 

Replace shift vector c1 with vector c2 for shift k 

and calculate SPDnew 

If |SPD’ - SPDnew| < |SPD’ – SPDold| then  

Replace vector c1 with vector c2  

SPDold = SPDnew 

 Save the day matrix and set d1 = d1 + 1 

If d1 < D1 repeat step 2 

Step 3. Construct W1 DPD’ week matrices 

Select randomly one day matrix d1 from the D1 matrices 
Construct a week matrix with DPD = 0 (i.e. all days equal d1) 

Set DPDold = 0 

For j = 2 to D 

For d2 = 1 to D1 

Replace day matrix d1 with matrix d2 for day j 

and calculate DPDnew 

If |DPD’ - DPDnew| < |DPD’ – DPDold| then  



 16 

Replace matrix d1 with matrix d2  

DPDold = DPDnew 

 Save the week matrix and set w1 = w1 + 1 

If w1 < W1 repeat step 3 

Step 4. Improvement SPD’ and DPD’ 

Select the best found week matrix with known SPD and DPD value 

For j = 1 to D  

For k = 1 to S 

 For i1 = 1 to N 

  For i2 = i1 to N 

   Swap(pi1,j,k, pi2,j,k) 

   If SPD or DPD improves, save new week 

matrix 

Return 

 

The first step randomly generates C1 shift vectors with a NPD-value as close as 

possible to NPD’ (a shift vector is one column of a week preference matrix as given in table 

3). In step 2, the procedure combines these vectors to generate a day preference matrix with 

a given value for SPD’. To that purpose, the procedure randomly selects one shift vector 

and creates a day matrix with a SPD-value of 0. This day matrix contains the selected shift 

vector for all shifts of the day. The procedure aims at improving the SPD-value by 

replacing the shift vectors one at a time with the other generated shift vectors of step 1. 

Each time an improvement has been made (i.e. the newly found SPD value lies closer to the 

pre-specified SPD’-value), the new shift vector replaces the old one in the day matrix. The 

best found day matrix will be saved and this process will be repeated until D1 day matrices 

are obtained. In step 3, these day matrices, on their turn, are used to combine them to week 

matrices with a given DPD’-value in a similar way as the construction of the day matrices. 

Instead of scanning all the shifts (step 2), the procedure scans all the days to find good 

combinations of day matrices to result in week matrices with a DPD-value close to DPD’. 

This process is repeated until W1 week schedules are obtained. Step 4 selects the best week 

matrix found and aims at improving the DPD and SPD value. More precisely, the procedure 

swaps individual nurse preferences for each day and each shift in order to look for 

improvement for SPD and DPD. The NPD value remains unchanged during this step, since 

swaps are made within one single shift. Computational tests have revealed that a stop 

criterion C1 = D1 = W1 = 100 for each step results in a fast and efficient procedure with 

excellent performance for all indicators. All preference matrices are extended with coverage 
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requirements by the controlled random generation of numbers with known values for the 

TCC, SCD and DCD indicators. 

 

In their overview papers, Cheang et al (2003) and Burke et al (2004) call the 

importance of benchmark instances to test the exact and/or (meta-)heuristic procedures for 

the nurse scheduling problem. In doing so, a benchmark dataset that is shared among the 

research community facilitates the systematic evaluation and comparison of the 

performance of the different procedures. The proposed instance generator NSPGen is a 

useful tool to generate these instances based on the set of complexity indicators proposed in 

section 3. Hence, a library of NSP instances (NSPLib) has been presented by Vanhoucke 

and Maenhout (2005) that is accessible by the research community. The benchmark 

instances have been grouped in six different sets and are characterized by systematically 

varied levels of all the complexity indicators. In total, NSPLib contains 7,290 problem 

instances with a one-week scheduling period and 1,920 instances with a one-month 

scheduling period. Each instance of the dataset can be extended by a particular set of case-

specific constraints. More precisely, the user can choose among 16 sets of possible 

constraints, where each set consists of a combination of constraints identified by Cheang et 

al (2003) as appearing frequently in literature. For more details about the proposed 

benchmark set, we refer the reader to Vanhoucke and Maenhout (2005). The problem 

instances and the corresponding case constraint files can be downloaded from 

www.projectmanagement.ugent.be/nsp.php.  

 

5. COMPUTATIONAL EXPERIMENTS 

5.1. Preliminary test results 

Small sized nurse scheduling problems can be solved using branch and bound 

procedures typically provided with commercially available software. We have programmed 

a simple IP model to solve small instances of the NSP procedures in Visual C++ version 6.0 

and run it on a Toshiba personal computer with a Pentium IV 2.4 GHz processor under 

Windows XP. The model has been linked with the industrial LINDO optimization library 

version 5.3 (Schrage, 1995). In this paper, we do not have the intention to present an 

http://www.projectmanagement.ugent.be/nsp.php
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efficient model to solve large-sized realistic nurse scheduling problem instances. Instead, 

we aim at detecting the influence of preference structures and coverage requirements with 

given values of the pre-defined indicators on the problem complexity. To that purpose, we 

have generated small-sized NSP instances with the complexity indicators as given in table 

4. Using 5 instances for each problem class, we obtain 46,875 data instances. 

Insert Table 4 about here 

The simple IP model contains the following case-specific constraints:  

 Number of assignments per nurse equals 5 

 minimum 2 consecutive working days per nurse  

 minimum 2 identical consecutive working shifts per nurse 

 

The hardness of a problem instance is typically measured by the amount of CPU-

time that a solution procedure needs to find an exact solution for the problem at hand. It is 

therefore of great importance to possess a set of problem characteristics that discriminates 

between easy and hard instances and that acts as a predictor of the computational effort of 

the procedures. If good predictions of the required CPU-time for different solution 

procedures were available, it would be possible to a priori select the fastest solution 

procedure, based on the simple calculation of these problem characteristics. The following 

tables display the average CPU time (Avg.) required to solve the problem instances to 

optimality and the number of instances for which a feasible solution exists (#Sol). Each 

table contains the required CPU time for the complexity indicators (either preference 

related or coverage related) and the number of instances that could be solved to optimality 

within a pre-determined time of 180 seconds. 

 

Table 5 displays the one-dimensional effect of the six indicators on the required 

CPU-time to solve the problem instances to optimality. Tables 5, 6, 7 and 8 clarify the 

effects of the different indicators on problem complexity (measured by the CPU-time).  
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Insert Table 5 about here 

The effect of NPD shows an increasing pattern on the CPU-time. Indeed, the more 

nurses express an identical preference for a particular shift, the more conflicts between 

nurses exist, resulting in an increasing problem complexity.  

 

The SPD shows a hard-easy-hard transition effect, and has been further explained in 

combination with NPD, as shown in table 6. For low NPD values, the table shows a 

decreasing effect for increasing SPD-values. In general, low NPD values results in a few 

conflicts between nurses, and hence, in a rather easy schedule. Combined with high SPD 

values results in a clear nurse preference for each shift of the day and hence, there are not 

much conflicts, neither between the different nurses nor between their shift preferences on 

each day. However, a low SPD value means that nurses are indifferent between shifts, and 

hence it is not a priori clear which shift assignment is best for each nurse. The table shows 

an opposite behaviour for high NPD values (which result in a higher complexity anyway). 

Both low and high SPD values results in a conflict between nurses. In the former, all nurses 

have an identical preference for all shifts, and hence, a switch for a nurse to another shift 

does not influence the total preference cost but might resolve some case-specific constraint 

violations. High SPD values results in a clear conflict between the shifts, since all nurses 

express an identical preference for each shift. As a result, the (preference) cost of switching 

a particular nurse to his/her second or third choice results in an increase of the preference 

cost. The effect between NPD and DPD shows a similar behaviour as table 6, although 

somewhat less outspoken, as shown in table 7. 

Insert Table 6 and Table 7 about here 

The TCC measures the constrainedness of the problem instances, and has a positive 

correlation with problem complexity. If more nurses are required by the hospital, then the 

freedom to schedule a subset of nurses on a particular shift/day without violating case-

specific constraints is dramatically reduced. Increasing values for DCD result in an 
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increasing complexity. Table 8 further clarifies the effect of DCD on the CPU-time, in 

combination with the different settings for the TCC complexity indicator.  

Insert Table 8 about here 

This table reveals that the DCD has a negative impact on the CPU-time for low 

TCC-values, and an opposite behaviour for medium or high values for TCC. Low TCC-

values and high DCD values result in tight coverage requirements for a small number of 

days while all other days do not require any nurses. Hence, only a small number of days are 

constrained, which results in much freedom to schedule the nurses over the complete time 

horizon. On the other hand, high DCD values with high TCC values result in tight coverage 

requirements for almost all days. Hence, a careful trade-off needs to be made to schedule 

the nurses without violating many case-specific constraints.  

  

The effect of SCD shows, in general, an easy-hard-easy transition, i.e. an increasing 

(from low to medium values) followed by a decreasing (from medium to high values) 

effect, on the CPU-time. Low SCD values mean that the coverage requirements are almost 

equally distributed among the shifts, and hence, the probability of violating case-specific 

constraints (like the consecutiveness constraints) is rather low. As the SCD value goes up, 

violating these constraints is more likely, resulting in a higher problem complexity. 

However, large values for SCD either results in easy schedules or infeasible schedules, 

which explains the decreasing trend of the CPU-time. Indeed, all daily nurse requirements 

occur on one single shift, which results in either an almost unconstrained problem instance 

(there is no much choice than assigning nurses to this shift) or infeasible instances (due to 

the limited choice and the consecutiveness and succession constraints, no feasible 

assignment can be found). In appendix C, we tested the significance of the mean differences 

by means of a one-way ANOVA test. Moreover, we extended the table by a post hoc 

analysis to detect which mean values are different. The appropriate post hoc test was 

selected based on the homogeneity of variances indicated by Levene's test for homogeneity 

of variances. 
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5.2. A CHAID regression tree 

In order to gain further insights on the influence of the proposed indicators on 

problem complexity, we clustered our data instances based on the required CPU-time in a 

way that reduces variation. This categorization is performed using a decision tree based on 

the CHAID algorithm (Chi-square automatic interaction detection (Kass, 1980)) of which 

the goal is to create a concise model which a priori predicts the hardness of new problem 

instances based on their characteristics. CHAID investigates the effects of independent 

variables on a dependent variable. Starting with all observations in a single group and a set 

of independent variables, the observations are subsequently split into two or more groups 

by the same or an alternative independent variable until further splitting will not reduce the 

variation of the dependent variable. The splitting is performed by the independent variable 

that is judged to be most important in reducing the total variation in the dependent variable. 

The criterion for evaluating a splitting rule is based on a statistical significance test, namely 

an F-test with a p-value of 0.05 as a stopping rule. Furthermore, the split is performed 

subject to a limit of 5 branches (which is equal to the (maximal) number of different values 

for each indicator of table 4) and a limit of minimal 10 observations assigned to each 

branch. For these criteria, the best split is the one with the smallest p-value. The decision 

tree, presented in appendix D, is created using a training data set (records sampled from the 

entire dataset of table 4) and validated on a testing dataset (remaining records). The dataset 

was randomly split into a training and a testing dataset, 70 – 30 respectively. For each split 

the splitting variable and the resulting branches with their corresponding split values are 

indicated. The tree counts 29 splitting nodes and 49 end nodes (leaves) which are 

designated by a number. The descriptive statistics (average; standard deviation) for the 

leaves are indicated below the tree.  

 

In order to visualize the discriminative power and to give an indication of the 

predictive power of the decision tree, we generated new data instances by NSPGen based 

on the values for the complexity indicators for 10 different end nodes. Furthermore, we 

generated data instances with neighbouring values for some of these classes. The data 

instances of classes 11, 12, 13 and 14 are created in the vicinity of classes 2, 3, 9 and 10, 

respectively (and hence, the “end node” column values correspond to each other). The 
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values for the complexity indicators for newly generated problem instances for the 

designated end nodes are indicated in table 9.  

Insert Table 9 about here 

The required CPU-time to solve these data instances to optimality are presented in 

figure 1. This figure reveals that instances within a class are rather homogeneous with 

respect to the computational performance, while the CPU-time varies between different 

classes. Furthermore, instances generated with neighbouring values for the complexity 

indicators have more or less the same behaviour in computational complexity. Comparing 

the required CPU-time to solve the newly generated data instances to optimality with the 

computational results upon which the decision tree in appendix D is built exposes the 

predictive power of the decision tree and the proposed complexity indicators.  

Insert Figure 1 about here 

6. CONCLUSIONS 

In this paper, we presented three classes of indicators to characterise nurse 

scheduling problem instances. The first class describes the size of the problem instances, 

measured by the number of nurses, number of shifts and number of days of the roster 

matrix. The second class consists of three indicators to characterise the preference structure 

of the roster matrix. The last class represents the coverage constraints of the roster. 

 

We have presented a simple, yet efficient generation approach to generate NSP 

instances with given values for the aforementioned indicators. This generator allows 

researchers to generate instances that can be used to test existing and newly developed 

state-of-the-art procedures. Moreover, the generator has been used by Vanhoucke and 

Maenhout (2005) to create a benchmark dataset in order to facilitate future research 

comparison of newly developed procedures. Both the generator and the benchmark dataset 

can be downloaded from www.projectmanagement.ugent.be/nsp.php.  

http://www.projectmanagement.ugent.be/downloads.html%20under%20the%20names%20N25.zip
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Finally, we have used a straightforward IP model to test the influence of the 

proposed complexity indicators on the complexity of the nurse scheduling problem 

instances. The results show promising effects of the indicator settings on the required CPU-

time to solve the problem instances, both for the preference related and the coverage related 

indicators. Inspired by these results, we would like to call for using the proposed dataset to 

test newly developed procedures to facilitate comparison with current state-of-the-art 

procedures. 

 

Our future intensions are threefold. First, we will investigate the explanatory and 

predictive power of the proposed indicators in depth. Based on the preliminary results of 

section 5, we believe that the indicators can predict problem complexity into more detail 

(e.g. by investigating three-or-more dimensional effects or a more detailed investigation of 

the classification trees). Classification and regression trees have been successfully used in 

other areas of health care (Smith et al, 1992; Harper and Shahani, 2002; Garbe et al, 1995; 

Ridley et al, 1998; Harper and Winslett, 2006). These trees classify individual observations 

in groups based on simple splitting rules and allow the prediction of the outcome of interest 

of new observations based on known parameter values of the associated class. Secondly, we 

want to develop new approaches to solve the NSP and compare existing state-of-the-art 

procedures on our dataset. In doing so, we will investigate the occurrence of phase 

transitions in nurse scheduling problems that give an indication of dramatic changes in 

problem complexity. In doing so, we can a-priori select the fastest and best solution 

procedures based on some simple calculations of the indicators. Last, we will investigate 

the influence of different case-specific constraints on the performance of an algorithm and 

the influence of the constructed schedule. The relation between the proposed indicators and 

the specific constraints might reveal some interesting results. 
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APPENDIX A 

The complexity indicators 

 

In this appendix, we define a general measure of variance that will be used to describe three 

complexity indicators in the paper. The measure of variance is defined as 
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 (first 

term) and all the other (m - 1) terms are equal to zero. The intuition behind the general 

formula for max [1] is as follows. The first term measures the deviation for all xt’s that can 

be put at their maximum value of u. The second term measures the variance for the xt, if 

any, with a value between x  and u. The third term sets the remainder of the xt’s to zero.  
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The measure of variance is used for three complexity indicators, i.e. the NPD, the DCD and 

the SCD.  

 

A.1 The NPD 

The NPD distributes the different preferences l (from 1 to S) among nurses, and therefore, xt 
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A.3 The SCD 

The SCD distributes the daily coverage requirement to the individual shift, and therefore, xt 

= jkr  (i.e. x1 = rj1, x2 = rj2, …, xS = rjS), 
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. Therefore, no explicit upper value needs to 

be taken into consideration, and equation [2] collapses to jj rrS 22  . 
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APPENDIX B 

Example preference matrices with extreme settings for NPD/SPD/DPD 
 

0/0/0 Day 1 Day 2 Day 3

Nurse S1 S2 S3 S1 S2 S3 S1 S2 S3

1 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2

3 2 2 2 2 2 2 2 2 2

4 1 1 1 1 1 1 1 1 1

5 1 1 1 1 1 1 1 1 1

6 1 1 1 1 1 1 1 1 1

7 3 3 3 3 3 3 3 3 3

8 3 3 3 3 3 3 3 3 3

9 3 3 3 3 3 3 3 3 3

0/0/1 Day 1 Day 2 Day 3

Nurse S1 S2 S3 S1 S2 S3 S1 S2 S3

1 2 2 2 1 1 1 3 3 3

2 2 2 2 1 1 1 3 3 3

3 2 2 2 1 1 1 3 3 3

4 1 1 1 3 3 3 2 2 2

5 1 1 1 3 3 3 2 2 2

6 1 1 1 3 3 3 2 2 2

7 3 3 3 2 2 2 1 1 1

8 3 3 3 2 2 2 1 1 1

9 3 3 3 2 2 2 1 1 1

0/1/0 Day 1 Day 2 Day 3

Nurse S1 S2 S3 S1 S2 S3 S1 S2 S3

1 2 1 3 2 1 3 2 1 3

2 2 1 3 2 1 3 2 1 3

3 2 1 3 2 1 3 2 1 3

4 1 3 2 1 3 2 1 3 2

5 1 3 2 1 3 2 1 3 2

6 1 3 2 1 3 2 1 3 2

7 3 2 1 3 2 1 3 2 1

8 3 2 1 3 2 1 3 2 1

9 3 2 1 3 2 1 3 2 1

0/1/1 Day 1 Day 2 Day 3

Nurse S1 S2 S3 S1 S2 S3 S1 S2 S3

1 2 3 1 1 2 3 3 1 2

2 2 3 1 1 2 3 3 1 2

3 2 3 1 1 2 3 3 1 2

4 1 2 3 3 1 2 2 3 1

5 1 2 3 3 1 2 2 3 1

6 1 2 3 3 1 2 2 3 1

7 3 1 2 2 3 1 1 2 3

8 3 1 2 2 3 1 1 2 3

9 3 1 2 2 3 1 1 2 3

1/1/0 Day 1 Day 2 Day 3

Nurse S1 S2 S3 S1 S2 S3 S1 S2 S3

1 1 2 3 1 2 3 1 2 3

2 1 2 3 1 2 3 1 2 3

3 1 2 3 1 2 3 1 2 3

4 1 2 3 1 2 3 1 2 3

5 1 2 3 1 2 3 1 2 3

6 1 2 3 1 2 3 1 2 3

7 1 2 3 1 2 3 1 2 3

8 1 2 3 1 2 3 1 2 3

9 1 2 3 1 2 3 1 2 3

1/0/1 Day 1 Day 2 Day 3

Nurse S1 S2 S3 S1 S2 S3 S1 S2 S3

1 2 2 2 3 3 3 1 1 1

2 2 2 2 3 3 3 1 1 1

3 2 2 2 3 3 3 1 1 1

4 2 2 2 3 3 3 1 1 1

5 2 2 2 3 3 3 1 1 1

6 2 2 2 3 3 3 1 1 1

7 2 2 2 3 3 3 1 1 1

8 2 2 2 3 3 3 1 1 1

9 2 2 2 3 3 3 1 1 1

1/1/0 Day 1 Day 2 Day 3

Nurse S1 S2 S3 S1 S2 S3 S1 S2 S3

1 1 2 3 1 2 3 1 2 3

2 1 2 3 1 2 3 1 2 3

3 1 2 3 1 2 3 1 2 3

4 1 2 3 1 2 3 1 2 3

5 1 2 3 1 2 3 1 2 3

6 1 2 3 1 2 3 1 2 3

7 1 2 3 1 2 3 1 2 3

8 1 2 3 1 2 3 1 2 3

9 1 2 3 1 2 3 1 2 3

1/1/1 Day 1 Day 2 Day 3

Nurse S1 S2 S3 S1 S2 S3 S1 S2 S3

1 1 2 3 3 1 2 2 3 1

2 1 2 3 3 1 2 2 3 1

3 1 2 3 3 1 2 2 3 1

4 1 2 3 3 1 2 2 3 1

5 1 2 3 3 1 2 2 3 1

6 1 2 3 3 1 2 2 3 1

7 1 2 3 3 1 2 2 3 1

8 1 2 3 3 1 2 2 3 1

9 1 2 3 3 1 2 2 3 1  
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APPENDIX C 

ANOVA table for the test results of sectio 4.2 (the significance of the meand 

differences by means of one-way ANOVA-test) 

NPD SPD DPD SCD DCD

ANOVA < 0.001** < 0.001** < 0.001** < 0.001** < 0.001**

Levene's Test < 0.001** < 0.001** < 0.001** < 0.001** < 0.001**

Post Hoc

  0 vs 0.25 0.992 < 0.001** 0.057 0.524 1.000

  0 vs 0.5 0.903 0.865 0.147 < 0.001** 0.013*

  0 vs 0.75 < 0.001** 0.628 < 0.001** < 0.001** < 0.001**

  0 vs 1 < 0.001** < 0.001** < 0.001** 1.000 < 0.001**

  0.25 vs 0.5 1.000 < 0.001** < 0.001** < 0.001** 0.070

  0.25 vs 0.75 < 0.001** < 0.001** < 0.001** 0.116 < 0.001**

  0.25 vs 1 < 0.001** < 0.001** < 0.001** 0.877 < 0.001**

  0.5 vs 0.75 < 0.001** 1.000 0.201 0.797 0.018*

  0.5 vs 1 < 0.001** < 0.001** 0.070 < 0.001** < 0.001**

  0.75 vs 1 < 0.001** < 0.001** 1.000 < 0.001** 0.268  

TCC

ANOVA < 0.001**

Levene's Test < 0.001**

Post Hoc

  0.2 vs 0.35 0.006*

  0.2 vs 0.5 < 0.001**

  0.35 vs 0.5 < 0.001**  
* The p-value is smaller than 0.05 

** The p-value is smaller than 0.01 

(a) An LSD test or Dunnett T3 test is used as a Post Hoc Test whether the H0 hypothesis of the Levene's test 

for homogenity of variances is respectively accepted or rejected 
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APPENDIX D 

Decision tree: The resulting CHAID regression tree 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
1: (2.21; 4.59) 7: (2.17; 1.95) 13: (13.73;  41.71) 19: (8.46; 35.50) 25: (11.13; 34.96) 31: (15.11; 43.90) 37: (0.73; 2.18) 43: (9.43; 26.08) 49: (47.26; 71.89) 
2: (0.50; 3.17) 8: (0.73; 1.43) 14: (3.37; 15.81) 20: (0.50; 1.13) 26: (8.00; 20.86) 32: (24.18; 54.15) 38: (1.70; 2.84) 44: (14.38; 35.91) 

3: (0.29; 0.82) 9: (1.40; 4.83) 15: (4.95; 7.94)  21: (7.24; 2.51) 27: (2.27; 10.58) 33: (9.84; 35.34) 39: (6.45; 21.77) 45: (18.90; 44.73) Node number: (average CPU; standard deviation) 

4: (1.60; 9.58) 10: (0.96; 1.51) 16: (4.51; 19.72) 22: (4.15; 3.55) 28: (7.92; 22.69) 34: (16.96; 47.76) 40: (9.04; 23.57) 46: (9.11; 21.68) 
5: (0.94; 5.26) 11: (1.27; 2.71) 17: (1.32; 7.23) 23: (2.49; 10.59) 29: (3.53;  10.15) 35: (40.32; 72.99) 41: (23.94; 55.73) 47: (18.93; 48.88) 

6: (0.71; 3.17) 12: (1.61; 5.99) 18: (1.04; 3.39) 24: (5.62; 16.46) 30: (9.44; 25.22) 36: (12.19; 41.79) 42: (4.69; 14.91) 48: (36.28; 66.40) 

 

 

DPD 

          ≤ 0.5                                                      = 0.75                      = 0                   ≥ 0.25                   ≤ 0.25                        = 0.5                       = 0.75                             = 1      = 0.2    = 0.35   = 0.5         ≤ 0.25  ≥ 0.5 

   DCD    NPD 

   TCC 

        = 0     = 0.25   = 0.5    = 0.75   = 1      = 0      = 0.25  = 0.5    = 0.75  = 1      ≤ 0.5   ≥ 0.75       ≤ 0.75           = 1             ≤ 0.75    = 1       ≤ 0.5      = 0.75   ≤ 0.25     ≥ 0.5             ≤ 0.5    = 0.75 
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TABLE 1 

The three classes of indicators measuring the size, preferences and coverage 

requirements of a NSP isntance 

Size Preferences Coverage

Number of nurses Preference distribution Total number of nurses

among nurses (NPD ) required (TCC )

Number of shifts Preference distribution Distribution of required number

in a day over all shifts (SPD ) of nurses over all shifts (SCD )

(for each day) (for each day)

Number of days Preference distribution Distribution of required number

in a complete over all days (DPD ) of nurses over all days (DCD )

scheduling period (for the scheduling period) (for the scheduling period)  
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TABLE 2 

The different NPD scenarios for 15 nurses and three shifts 

 

k NPD l  = 1 l  = 2 l  = 3

1 0.80 13 1 1

2 0.50 3 2 10

3 0.20 5 3 7  
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TABLE 3 

The four-days preference matrix (top) and coverage requirements (bottom) with 

known values for the different indicators 

Day 1 Day 2 Day 3 Day 4

S1 S2 S3 S1 S2 S3 S1 S2 S3 S1 S2 S3

3 3 3 2 3 3 1 3 2 2 1 3

1 1 1 2 2 3 1 1 3 2 3 1

3 3 3 1 1 1 1 3 3 2 3 1

3 2 2 2 2 2 1 1 2 2 1 3

3 3 3 2 1 1 3 3 1 3 2 2

3 1 1 2 1 1 1 1 2 2 1 3

3 3 3 2 2 3 1 3 2 2 1 3

3 3 2 2 1 1 1 1 2 2 1 3

3 3 1 2 1 1 1 3 3 2 1 3

3 3 1 2 1 2 1 1 3 2 3 2

3 3 3 3 3 3 1 3 2 2 1 1

3 3 3 2 1 2 1 1 3 1 2 2

3 1 1 2 1 1 1 1 1 2 1 1

3 3 3 2 1 1 2 3 1 2 1 2

2 2 2 2 1 2 1 1 2 2 1 3

3 3 3 1 2 3 4 1 1 0 9 0  
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TABLE 4 

Test settings used for our computational tests 

Problem size

N 10

S 3 (including the free shift)

D 7

Preference distribution

NPD 0, 0.25, 0.50, 0.75 or 1

SPD 0, 0.25, 0.50, 0.75 or 1

DPD 0, 0.25, 0.50, 0.75 or 1

Coverage constraints

TCC 0.20, 0.35 or 0.50

DCD 0, 0.25, 0.50, 0.75 or 1

SCD 0, 0.25, 0.50, 0.75 or 1  
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TABLE 5 

The effect of the indicators on the required CPU-time 

Avg. #Sol Avg. #Sol Avg. #Sol Avg. #Sol Avg. #Sol

0 3.101 8,380 5.231 8,365 5.007 8,418 4.885 9,367 4.569 9,375

0.25 3.321 8,405 4.090 8,400 4.182 8,425 5.436 9,108 4.690 9,120

0.5 3.416 8,382 5.630 8,389 5.822 8,366 6.942 8,380 5.504 8,471

0.75 5.406 8,379 5.750 8,404 6.696 8,346 6.347 7,908 6.663 7,761

1 13.296 8,387 7.842 8,375 6.848 8,378 4.980 7,170 7.689 7,206

DCDNPD SPD DPD SCD

 

Avg. #Sol

0.2 3.348 15,416

0.35 4.943 14,080

0.5 9.499 12,437

TCC
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TABLE 6 

The two-dimensional effect of NPD and SPD on the required CPU-time 

NPD

SPD Avg. #Sol Avg. #Sol Avg. #Sol Avg. #Sol Avg. #Sol

0 4.625 1,680 5.557 1,683 5.199 1,665 5.141 1,659 5.630 1,678

0.25 3.785 1,668 3.494 1,674 3.266 1,688 3.259 1,686 6.640 1,684

0.5 2.372 1,688 2.935 1,678 2.506 1,682 5.230 1,664 15.136 1,677

0.75 2.303 1,684 2.199 1,695 3.236 1,671 6.163 1,681 14.914 1,673

1 2.425 1,660 2.422 1,675 2.887 1,676 7.228 1,689 24.208 1,675

0 0.25 10.5 0.75
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TABLE 7 

The two-dimensional effect of NPD and DPD on the required CPU-time 

NPD

DPD Avg. #Sol Avg. #Sol Avg. #Sol Avg. #Sol Avg. #Sol

0 4.252 1,693 3.149 1,688 3.792 1,675 5.301 1,676 8.538 1,686

0.25 2.485 1,667 2.882 1,688 3.147 1,697 4.660 1,704 7.754 1,669

0.5 2.992 1,669 3.150 1,663 3.614 1,683 6.703 1,672 12.617 1,679

0.75 2.936 1,685 3.364 1,677 3.303 1,649 6.082 1,665 17.799 1,670

1 2.827 1,666 4.055 1,689 3.223 1,678 4.294 1,662 19.768 1,683

10.5 0.750 0.25
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TABLE 8 

The two-dimensional effect of TCC and DCD on the required CP-time  

DCD

TCC Avg. #Sol Avg. #Sol Avg. #Sol Avg. #Sol Avg. #Sol

0.2 3.684 3,125 3.490 3,125 3.793 3,125 2.891 3,102 2.847 2,939

0.35 4.690 3,125 5.163 3,125 4.513 2,927 4.539 2,522 5.943 2,381

0.5 5.333 3,125 5.480 2,870 8.914 2,419 14.644 2,137 17.438 1,886

0.75 10 0.25 0.5
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TABLE 9 

10 classes of data instances with different indicator values 

Class NPD SPD DPD TCC SCD DCD End node

1 ≤ 0.5 0 0 - 1 0.2 0 - 1 0 - 1 1

2 0.75 0.25 ≤ 0.25 0.2 0 - 1 0 - 1 8

3 0.75 0 - 1 ≥ 0.75 0.2 0 - 1 0 - 1 14

4 ≤ 0.75 0 0 - 1 0.35 0 - 1 0 - 1 15

5 ≤ 0.75 ≤ 0.25 0 - 1 0.5 ≤ 0.5 0.5 26

6 ≤ 0.75 0 - 1 0 - 1 0.5 0 1 33

7 ≤ 0.75 0 - 1 0 - 1 0.5 0.25 1 34

8 1 ≤ 0.25 0 - 1 0.2 0 - 1 0 - 1 38

9 1 ≤ 0.25 0 - 1 0.35 0 - 1 0 - 1 39

10 1 0.5 - 0.75 ≥ 0.5 0 - 1 0 - 1 0 - 1 45

11 0.75 - 0.8 0.2 - 0.25 0.2 - 0.25 0.2 0 - 1 0 - 1 8

12 0.75 - 0.8 0 - 1 0.75 0.15 - 0.2 0 - 1 0 - 1 14

13 1 0.2 - 0.25 0 - 1 0.3 - 0.35 0 - 1 0 - 1 39

14 1 0.6 ≥ 0.5 0 - 1 0 - 1 0 - 1 45  
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FIGURE 1 

The required CPU-time for each class for the NSP 
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