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ABSTRACT 

 

We develop a new Data Envelopment Analysis (DEA)-based methodology for measuring the 

efficiency of Decision Making Units (DMUs) characterized by multiple inputs and multiple outputs. 

The distinguishing feature of our method is that it explicitly includes information about output-

specific inputs and joint inputs in the efficiency evaluation. This contributes to opening the „black 

box‟ of efficiency measurement in two different ways. First, including information on the input 

allocation substantially increases the discriminatory power of the efficiency measurement. Second, it 

allows to decompose the efficiency value of a DMU into output-specific efficiency values which 

facilitates the identification of the outputs the manager should focus on to remedy the observed 

inefficiency. We demonstrate the usefulness and managerial implications of our methodology by 

means of a unique dataset collected from the Activity Based Costing (ABC) system of a large service 

company with 290 DMUs. 

 

Keywords: efficiency measurement, DEA, input allocation, efficiency decomposition, ABC systems 
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1. INTRODUCTION 

 

Efficiency analysis of production activities is an important issue for practitioners as well as an 

area of contemporary interest in both the operations research and economics literature (see, for 

example, Färell et al. (1994), Cooper et al. (2000), Fried et al. (2008), Cook and Seiford (2009) for 

reviews). The goal of such analysis is to evaluate the efficiency of a DMU (i.e. Decision Making Unit, 

which is typically a business unit, office or branch of a private or public sector company) by 

comparing its input-output performance to that of other DMUs operating in a similar technological 

environment (typically other business units of the same company). Amongst the efficiency 

measurement techniques, Data Envelopment Analysis (DEA) has become popular both as an 

analytical research instrument and as a practical decision-support tool. DEA is a production frontier 

technique with the distinguishing feature that it is nonparametric in nature, which means that it does 

not resort to some (typically unverifiable) parametric/functional specifications for the production 

technology but rather "lets the data speak for themselves". 

Still, existing DEA methods essentially provide a "black box" treatment of efficient production 

behavior, because they only use information on inputs and outputs (and sometimes their prices) to 

evaluate the efficiency of each DMU. What happens inside the "black box", i.e. how inputs and 

outputs are exactly linked to each other, does not enter the analysis. However, including such 

information can improve the discriminatory power of efficiency models without needing to resort to 

unverifiable assumptions. In this study, we develop a DEA-based methodology for efficiency analysis 

that explicitly includes information about the allocation of inputs to outputs. In the application, we 

use Activity Based Costing (ABC) data of a large service company with 290 DMUs to show the 

practical relevance and managerial implications of our newly developed methodology. 

The methodology we develop is rooted in the structural efficiency measurement approach 

initiated by Afriat (1972), Hanoch and Rothschild (1972), Diewert and Parkan (1983) and Varian 

(1984). 1  This approach starts from a structural model of efficient production behavior and 

characterizes inefficiency as deviations from this model. Cherchye et al. (2008) adapted this approach 

to a multi-output setting that specifically accounts for economies of scope in production. The 

distinguishing feature of their methodology is that it explicitly recognizes that each different output 

is characterized by its own production technology, while accounting for interdependencies between 

the different output-specific technologies. Building on the original idea of Cherchye et al. (2008), we 

propose an efficiency measurement method that distinguishes between output-specific inputs and 

                                                           
1
 See also Banker and Maindiratta (1988) for an early study on the interrelationship between DEA and this structural 

approach to analyzing efficient production behavior. 
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joint inputs.2 The unique feature of our methodology is that we explicitly include information about 

the allocation of the output-specific inputs to the outputs. This practice opens the black box of 

efficiency measurement in two different ways. First, including information on the allocation of 

output-specific inputs substantially increases the discriminatory power of the efficiency 

measurement: our efficiency measurement method has more power to identify inefficient 

production behavior. In turn, this should lead to more actions for efficiency improvement and, 

consequently, higher realized cost reductions. Second, our methodology allows us to decompose the 

overall efficiency score of a DMU into output-specific efficiency scores and their respective weights in 

the DMU's overall efficiency. Such a decomposition is particularly attractive from a practical point of 

view, as it directly identifies the outputs on which DMU-managers should principally focus to remedy 

the observed inefficiency. Thus, our methodology should lead to more improvement actions and 

support managers to focus these improvement actions on the sources that contribute the most to 

the observed inefficiency. 

As we describe in detail in the following sections, the benefits of our methodology hinge on 

the availability of information about the allocation of inputs to outputs. Although perfect information 

about the allocation of inputs to outputs is hardly ever available, many large companies - which are 

typically considered in efficiency analyses - have well developed costing systems that provide 

information about the allocation of inputs (i.e. cost categories) to outputs (i.e. products) (Cooper and 

Kaplan 1998). While our methodology does not put any restrictions on the type of costing system 

that the company uses, we will demonstrate the usefulness of our methodology with data coming 

from an ABC system (Cooper and Kaplan 1988). ABC systems are widely used in practice for 

supporting various operational and strategic decisions such as pricing, cost reduction, product 

development, product mix decisions, and process re-engineering (Cooper and Kaplan 1998, Gosselin 

2007). The philosophy underlying ABC is that costs (or inputs) are first allocated to activities (i.e. the 

first stage of the ABC system) and, subsequently, these activity costs are allocated to the products (or 

outputs) (i.e. the second stage of the ABC system).3 

ABC provides a natural complement to our new DEA-based methodology for two reasons. 

First, proponents of ABC argue that the inclusion of activities in the transformation process from 

inputs to outputs leads to an accurate reflection of the complex production processes of companies 

with multiple inputs and outputs (Cooper and Kaplan 1988, 1998). Specifically, ABC systems 

                                                           
2
 Output-specific inputs are inputs that can be fully allocated to an output. For instance, when the input “labor” is used to 

produce two products and we can observe that 30% of labor time is used for product 1 and 70% for product 2, then labor 
can be decomposed into output-specific inputs “labor product 1” and “labor product 2”. By contrast, joint inputs cannot be 
allocated to specific outputs. A typical example of a joint input is the compensation package of a CEO. 
3
 Note that the ABC literature uses “expenses” or “costs” rather than “inputs”. However, expenses, costs and inputs all refer 

to “resources that are used to produce outputs”. For the sake of clarity and for maintaining consistency with the DEA 
terminology, we will use “inputs” in this study. 
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approximate the underlying production processes, which enables us to obtain accurate information 

about the decomposition of the inputs to the outputs without having to rely on (unverifiable) 

assumptions regarding the production technology. Second, ABC data are especially useful for 

production processes with multiple inputs and multiple outputs. Typically, the inputs of such 

production processes cannot be attributed to the outputs in a direct way, but the inclusion of 

activities between the inputs and outputs makes it possible to obtain accurate information about the 

decomposition of the inputs to the outputs. In other words, ABC data can be considered as the 

operationalization of the input decomposition that is central in our proposed methodology.4 

Summarizing, our study contributes to both the DEA literature and the accounting literature. 

The main contribution to the DEA literature is that, although we adopt minimal assumptions 

regarding the underlying production technology, we are able to set up an efficiency measurement 

methodology with considerable discriminatory power by explicitly including information about the 

allocation of inputs to outputs. Furthermore, the explicit inclusion of information about the 

allocation of the inputs to the outputs enables us to decompose the overall efficiency score in 

output-specific efficiencies, which can significantly improve managerial decision-making. Importantly, 

we also show that the dual formulation of our efficiency measurement model has an interpretation 

similar to standard DEA models. This enables the practitioner to interpret and compare scores easily. 

More generally, it presents our newly proposed methodology as a natural extension of the existing 

DEA methodology. In fact, as we will demonstrate in our application, the model allows for any 

extension that is often added to DEA analyses, such as controlling for exogenous factors or 

incorporating weight restrictions. 

This study also contributes to the accounting literature by showing that ABC information can 

be fruitfully applied for evaluating productive efficiency of business units, a purpose of ABC systems 

that has not been identified in prior studies. While some critics of ABC systems argue that the 

development costs of such systems are too high compared to the benefits that they generate, our 

application shows that the use of ABC information for evaluating productive efficiency can help 

companies to significantly reduce their cost level. In other words, the usefulness of ABC systems for 

efficiency analyses can be a major decision criterion to invest in such systems. 

The remainder of the paper is organized as follows. Section 2 introduces our methodology. 

Section 3 presents our empirical application and discusses the managerial implications. Section 4 

concludes and presents some opportunities for future research. 

                                                           
4
 Remark that ABC systems do not provide perfect information about the decomposition of the inputs to the outputs (see 

for instance Datar and Gupta (1994) and Labro and Vanhoucke (2007)). However, ABC systems are considered as the most 
accurate approximation of the decomposition of inputs to outputs (Bhimani et al. 2007). As a result, including ABC data in 
efficiency analyses should lead to the most reliable results given that perfect information about the decomposition of 
inputs to outputs is not available in general or not available at a reasonable cost. 
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2.  METHODOLOGY 

 

In Section 2.1 we explain the role of ABC systems in allocating inputs to outputs. This will set 

the stage for our methodological research question treated in the following sections. Sections 2.2 to 

2.4 then provide a formal presentation of our methodology. In Section 2.2 we present a 

characterization of our efficiency concept for multi-output production, which will provide the 

theoretical motivation for the proposed efficiency assessment methodology. Specifically, we 

establish the equivalence between, on the one hand, Pareto-Koopmans output efficiency and, on the 

other hand, multi-output cost efficiency.5  In Section 2.3 we demonstrate that the cost minimization 

characterization provides a useful starting point for DEA-type efficiency measurement. Specifically, 

we present our measure of multi-output cost efficiency, and the associated decomposition in output-

specific cost efficiencies. Finally, in Section 2.4 we show that the efficiency measure can be computed 

through simple linear programming. In addition, we extend this analysis to situations in which no (or 

only limited) price information is available. Here we also introduce the dual presentation of our 

efficiency measurement model, which will provide a clear link with existing DEA models. 

As a preliminary remark, we note that our following analysis will (only) use the production 

assumptions of free output disposability and convexity of producible output sets (see below). DEA 

applications often use additional production assumptions (e.g. related to the nature of the returns-

to-scale).6 To keep our discussion simple, we will abstract from explicitly discussing such additional 

assumptions in our analysis. However, we emphasize that such assumptions can be easily 

incorporated into our method, i.e. by including the corresponding (linear) DEA restrictions in the 

linear programs presented in Section 2.4. 

 

  

                                                           
5
 Pareto-Koopmans efficiency is a frequently used concept in the DEA literature on technical efficiency; see, for example, 

Charnes et al. (1985) for an early study. Next, cost efficiency (or cost minimizing behavior for a given output) is a well-
established concept of economic efficiency. For example, cost minimization is often applicable as the appropriate 
behavioral assumption for public service companies (with exogenously given outputs). More generally, cost minimization is 
known to be a necessary condition for profit maximizing behavior (see, for example, Varian (1992) for a general discussion). 
6
 See, for example, Cooper et al. (2000) for an overview of production assumptions that are frequently used in DEA 

applications. 
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2.1 Input allocation with ABC data 

 

A typical production process transforms multiple inputs into multiple outputs. Inputs can be 

considered as resource/cost categories and can be expressed in monetary terms. Outputs can be 

individual products, product categories, customers or market segments. Ideally, the allocation of 

inputs to outputs is perfectly observable. However, this information is not available and companies 

use costing systems to allocate inputs to outputs. During the last two decades, production processes 

have become more complex, which necessitates the development of more refined costing systems.7 

ABC is probably the most widespread costing system. An ABC analysis first allocates inputs to 

activities by means of resource drivers. In a second stage, the cost of the activities is allocated to the 

outputs by means of activity drivers. Figure 1 presents a graphical representation of an ABC costing 

system. 

Insert Figure 1 About Here 

In an ABC system, outputs can be considered as consumers of activities and activities can be 

considered as consumers of inputs. This implies that outputs can be entirely written in terms of 

activities and in terms of inputs. Thus, by relying on ABC systems, we know which percentage of an 

input is used for the production of a certain output. In other words, ABC systems generate accurate 

information about the input decomposition, which directly relates to the distinguishing feature of 

our newly developed methodology. 

ABC systems also enable us to distinguish between output-specific inputs and joint inputs. 

While ABC systems provide a way to allocate inputs to outputs, such systems also implicitly recognize 

that some inputs cannot be allocated to the different outputs in an accurate way. Specifically, ABC 

systems distinguish between different types of inputs that are necessary to produce the outputs 

(Cooper and Kaplan 1991). “Unit level” inputs such as direct labor, materials, and machine costs are 

consumed at the unit level and increase each time a unit of an output is produced. “Batch level” 

inputs such as setup costs and inspection costs are made to process another batch of products, 

“product-level” inputs such as costs for product engineering are triggered for every product that is 

introduced in the product portfolio, and “facility level” inputs such as compensation of the DMU 

                                                           
7
 It should be noted that some inputs such as material costs can be directly allocated to the outputs. Costing systems are 

thus only used for allocating inputs that cannot be allocated in a direct way to the different inputs (i.e. overhead costs). 
Remark that nowadays more than 80% of the total inputs do not have a clear relationship with the outputs and should thus 
be allocated to the outputs via the costing system. In service companies, which often use DEA-based methodologies to 
assess the efficiency of their business units, nearly all costs should be allocated via the costing system. 
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management and costs for maintenance of the buildings are used to support the facility or DMU. It is 

important to mention that “facility level” inputs lack any relationship with the activities and the 

outputs (Cooper and Kaplan 1991; 1998). As efficiency assessments can be biased by allocating 

inputs that have no cause-and-effect relationship with the outputs (i.e. an increase in the number of 

outputs does not lead to an increase in the inputs), we will consider facility level inputs as joint inputs 

in our efficiency assessment.8 

2.2 Characterizing efficient multi-output production behavior 

 

Practical efficiency analysis starts from a data set with T DMUs, which produce M outputs. As 

indicated above, at the input side, we make the distinction between output-specific inputs and joint 

inputs. Specifically, we assume Nspec output-specific inputs (e.g. which the ABC system can allocate) 

and Njoin joint inputs (e.g. which the ABC system cannot allocate). In this and the next section we will 

assume that the data set also contains the prices of the (output-specific and joint) inputs. We will 

relax this assumption in Section 2.4. In fact, exact price information will not be available for our 

empirical application in Section 3.  

More formally, we use the following notation for the observed quantities and prices of each 

DMU t (1 ≤ t ≤ T). First, we observe an M-vector of outputs         
 ; we use y

t
 =  1, ..., M

t t
y y  with 

each entry m

t
y  representing the amount that DMU t produces of the m-th output (1 ≤ m ≤ M). Next, 

we observe an Nspec-vector of output-specific inputs qm Nspec

t 
  for each individual output m, and 

an Njoin-vector of joint inputs Q Njoin

t 
 . Correspondingly, we observe a price vector p Nspec

t 
  

for the output-specific inputs and a price vector P Njoin

t 


 
for the joint inputs. The full data set can 

be summarized as  

 

  1, ,..., , , , 1,...,M

t t t t t t
S t T y q q Q p P . 

In what follows, we use 
' '

1

M
m

t t t t t
m

z


 
  

 
p q P Q  where 

t
z  is the budget (or cost) associated 

with DMU t. 

                                                           
8 Although proponents of ABC systems recognize that facility level inputs lack any relationship with the activities of the 

ABC system and thus with the outputs, ABC systems sometimes allocate these inputs to the activities and the outputs. The 

main reason for allocating such inputs is that ABC information is often used for pricing. Not allocating some inputs will lead 

to unit costs of the outputs that are too low and prices that do not cover the total amount of costs that have been made to 

produce the outputs. 
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To define our cost efficiency criterion for DMU t, we characterize the production technology 

by a vector of production functions 1 1 1( ,..., , ) ( ( , ),..., ( , ))M M Mf f fq q Q q Q q Q , where each 

function ( , )m mf q Q  represents the maximum quantity of output m that can be produced by the 

output-specific input         
      

  and the public input Q . Importantly, the use of a separate 

production function ( , )m mf q Q  for each m makes clear that our method incorporates that each 

different output is characterized by its own production technology. At the same time, we account for 

interdependencies between the different output-specific technologies through the joint inputs Q ; as 

discussed in the introduction, including joint inputs allows for economies of scope in production (see 

Cherchye et al. 2008). Throughout the study, we assume that the production functions ( , )m mf q Q  

satisfy free output disposability, i.e. less output never requires more input. Free output disposability 

is a standard assumption in the DEA literature (see, for example, Varian (1984) and Tulkens (1993) for 

discussion).  

For a given technology (characterized by 1( , ..., , )M

t t t
f q q Q ), we use the following definition 

of a producible output set associated with budget z , prices p  for the output-specific inputs and 

prices P  for the joint inputs: 

 

   


 
    

 
1

1

, , { , ..., , ' ' }.
M

M m

s
m

P z f for zp P y y q q Q   p q P Q

 

Thus, this set contains all output vectors y that can be produced with the given budget z 

under the prices p and P. In what follows, we assume that the sets  p P, ,P z  are convex. This 

assumption is again widely used in the DEA literature. It implies that the marginal rates of output 

transformation are everywhere decreasing along the boundary of the feasible production set (see 

Petersen (1990), Bogetoft (1996) and Cherchye et al. (2008) for a discussion).  

We are now in a position to define efficient production behavior. Specifically, we say that 

DMU t  is efficient if the corresponding inputs  1,..., ,M

t t t
q q Q  yield an output combination y

t  that 

is Pareto-Koopmans output efficient for the producible output set  p P, ,
t t t

P z . Pareto-Koopmans 

output efficiency is a well-established efficiency criterion in the efficiency measurement literature. It 

has the following formal definition: 
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Definition 1: For DMU t the output vector y
t  is Pareto-Koopmans output efficient if 

   y p P     , , : .m m l l

t t t t t
for all P z y y implies y y for l m   

 

 

In words, DMU t is Pareto-Koopmans efficient if it is impossible to increase output m without 

decreasing any other output l for budget zt, prices pt and Pt under the given production technology 

(captured by  p P, ,
t t t

P z ). 

So far, we have implicitly assumed that the vector of production functions 1( , ..., , )M

t t t
f q q Q  

(and the corresponding set  p P, ,
t t t

P z ) is known. In practice, however, we do not observe the 

functions ( , )m mf q Q . Consistent with the DEA approach that we follow, we avoid using a (typically 

unverifiable) functional specification for these functions. Rather, we check whether it is possible to 

construct a production function such that each DMU t satisfies the Pareto-efficiency criterion. Thus, 

we use the following Pareto-Koopmans output efficiency definition for the data set S:  

 

Definition 2: The data set S is Pareto-Koopmans output efficient if there exists a vector of 

production functions
 

1( , ..., , )M

t t t
f q q Q  (and corresponding output producible set

 p P, ,
t t t

P z ) such that for each DMU t the output vector y
t
 is Pareto-Koopmans 

output efficient.  

We remark that this efficiency criterion is not directly useful, since in principle there are 

infinitely many possible specifications of 1( , ..., , )M

t t t
f q q Q . Interestingly, however, we can provide 

an equivalent criterion that has empirical usefulness, as it avoids an explicit construction of 

1( , ..., , )M

t t t
f q q Q . In particular, we will derive that the Pareto-Koopmans output efficiency criterion 

in Definition 2 is met if and only if each DMU t produces every output m

t
y  (i.e. the mth entry of the 

vector yt) at a minimal cost when compared to the other DMUs in the data set. In other words, we 

can equivalently reformulate the above Pareto-Koopmans efficiency condition as a multi-output cost 

efficiency condition. 

To introduce this cost efficiency condition, we will need the following concept of implicit 

prices for the joint inputs:  
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Definition 3: For DMU t, with prices P
t

 for the joint input, implicit prices m Njoin

t 
P

 

(m = 1,…,M) 

satisfy 
1

.
M

m

t t
m 

 PP  

These (unobserved) implicit prices represent the fraction of the (observed) aggregate prices 

of the joint inputs that are borne by the different outputs. This is an intuitive concept from a costing 

perspective, where some overhead costs are sometimes used by multiple outputs (i.e. they represent 

joint inputs), but it is unknown to the cost accountant or empirical analyst at which ratio this 

happens. 

Using Definition 3, we can state the following multi-output cost efficiency condition for the 

data set S:  

Definition 4: The data set S is multi-output cost efficient if, for each DMU t, there exist implicit 

prices such that for each output m the following cost minimization condition holds: 

If, for some DMU s, m m

s t
y y , then    

' '
' 'm m m m

t t t t t s t s
  p q Q p q QP P . 

Thus, multi-output cost efficiency of the data set S requires for each DMU t that every output 

m is produced at a minimal cost (when compared to other DMUs s), where we use implicit prices to 

evaluate the joint inputs. In view of our following exposition, it is useful to reformulate the cost 

minimization condition for each specific output m as follows (for DMU t):  

    
' '

' 'min .
m m
s t

m m m m

t t t t t s t ss y y

 
   

 
p q Q p q QP P  (1)  

We can derive the following equivalence between the efficiency concepts in Definitions 2 

and 4 (the Appendix contains the proof): 

 

Proposition 1:  The data set S is Pareto-Koopmans output efficient if and only if it is multi-output 

cost efficient. 
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This result states that empirically checking the Pareto-Koopmans efficiency criterion in 

Definition 2 is equivalent to verifying consistency of each DMU t with the cost minimization condition 

in Definition 4. In the next section, we show that this multi-output cost efficiency condition implies a 

natural efficiency measure. Subsequently, we show in Section 2.4 that this efficiency measure can be 

computed through standard linear programming, which makes it easily implementable. 

 

2.3 Efficiency measurement 

 

Suppose we want to evaluate DMU t in terms of the multi-output cost efficiency criterion in 

Definition 4. We start from the cost minimization condition (1) for each specific output m. For a given 

specification of the implicit prices m

t
P , we can define the minimal cost for output m as 

 

    
'

'min
t m m

s t

m m m m

t t s t ss y y
c



 
  

 
p q QP P  (2) 

so that condition (1) requires    
'

' .
t

m m m m

t t t t t
c p q QP P  When considering all outputs m 

together, this naturally suggests the following measure of cost efficiency: 

 

  
 

1 1

' '

1

, ..., .
t

M
m m

t
M m

t t t M
m

t t t t
m

c

CE 









p q P Q

P

P P  (3) 

Clearly, we have  10 ,..., 1M

t t t
CE P P , with lower values indicating less cost efficiency 

(or more cost inefficiency). The value of  1, ..., M

t t t
CE P P  has a natural degree interpretation: for 

given m

t
P , it captures the extent to which the actual cost  ' '

1

M m

t t t tm
 p q P Q  exceeds the 

minimal cost  1 t

M m

m
c

  for the (multi-dimensional) output that is produced. 
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However, the cost efficiency measure  1, ..., M

t t t
CE P P  is not directly useful because it 

requires a prior specification of the implicit prices m

t
P . In empirical applications, we typically do not 

observe these prices. In this respect, we recall that Definition 4 (only) requires that there exists at 

least one specification of the implicit prices such that each observation is cost efficient. As such, we 

can use the following cost efficiency measure in practical efficiency analysis: 

 

  1

: P

max ,..., .
Njoinm m

t t tm

M

t t t t
CE CE


 


P P

P P  (4) 

In words, this cost efficiency measure selects those implicit prices that maximize the cost 

efficiency of DMU t. Intuitively, these implicit prices can be interpreted as most favorable prices for 

evaluating the public inputs. In fact, such most favorable pricing is implicitly used in DEA; see our 

discussion of LP-2 below. 

Similar to before, we have that 0 1
t

CE  , with lower values indicating less cost 

efficiency; and the degree interpretation of  1, ..., M

t t t
CE P P  carries over to 

t
CE  (but now for the 

endogenously selected m

t
P ). Clearly, DMU t meets the multi-output cost efficiency criterion in 

Definition 4 if and only if 
t

CE  = 1. The data set S is multi-output cost efficient (and thus Pareto-

Koopmans output efficient; see Proposition 1) if and only if each DMU t is cost efficient (i.e. 

 1, ..., M

t t t
CE P P  = 1 for all t).  

Importantly, the multi-output cost efficiency measure 
t

CE  can naturally be decomposed in 

terms of output-specific cost efficiencies. To see the decomposition, let *m

t
P  solve the max problem 

in (4), i.e. 

    1* * 1

: P

, ..., arg max ,..., .
Njoinm m

t t tm

M M

t t t t t
CE


 



P P

P P P P  (5) 

Correspondingly, we have  

 
 *

1

' '

1

.
t

M
m m

t
m

t M
m

t t t t
m

c

CE 









p q P Q

P

 (6) 
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Using this, we can write 

 
1

,
M

m m

t t
m

CE w CE


  (7) 

where 

 
'

' *

' '

1

m m

t t t tm

t M
m

t t t t
m

w








p q Q

p q P Q

P
  and  

 

 

*

'
' *

m m

t tm

t
m m

t t t t

c
CE 

p q Q

P

P

. 

In this decomposition, m

t
CE  measures the cost efficiency of DMU t in producing output m, 

while m

t
w  represents the weight of this output in the overall (multi-output) cost efficiency measure 

t
CE . More specifically, the output-specific efficiency measure m

t
CE  (always between 0 and 1) 

expresses how cost efficient DMU t is at producing output m. Next, the weight m

t
w  (also between 0 

and 1) represents the share of the total budget that is allocated to output m (for the given implicit 

prices *m

t
P ). Ex post, this can be interpreted as the weight allocated to output m in the calculation of 

the multi-output efficiency measure 
t

CE . 

We believe the decomposition in (7) has substantial practical value because the output-

specific efficiency measures can guide DMUs when evaluating the cause of their observed 

inefficiency as well as when planning actions to improve efficiency. In Section 3, we will illustrate the 

application of the decomposition for managerial purposes. 
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2.4 Practical implementation 

 

A particularly attractive feature of the measure 
t

CE  in (3) is that it can be computed 

through linear programming (LP). Actually, the solution of the LP problem also gives the implicit 

prices *m

t
P  that solve the maximization problem in equation (4). In turn, this enables us to compute 

the output-specific cost efficiencies m

t
CE  and the corresponding weights m

t
w , and so to conduct the 

decomposition of 
t

CE  in equation (7).

 

 

As we will explain, the maximization problem in equation (4) is equivalent to the following LP 

problem (LP-1): 

 

 

p q P Q

P

p q Q

1

0,
' '

1

1
'

'

max

. .

(C-1) 

(C-2) :  :

m m Njoin
t t

M
m

t
m

M
c

m

t t t t
m

M
m

t t
m

m m m m m

t t s t s s t

c

s t

m c s y y





 









    







P

P

P

 

In this problem, the constraints m Njoin

t 
P  and (C-1) make sure that the endogenously selected 

implicit prices m

t
P  satisfy Definition 3. Next, for given prices m

t
P , the constraint (C-2) ensures that 

m

t
c  in LP-1 satisfies equation (3), which defines  .t

m m

t
c P  As a result, we obtain that the solution to 

LP-1 effectively solves the max problem in equation (4) and vice versa, i.e. the values *m

t
P  defined in 

equation (5) and the corresponding values  *
t

m m

t
c P  solve LP-1. 
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So far, we have assumed that the input price vectors p
t
 and P

t
 are exactly observed. 

However, in many empirical applications such exact price information is not available.9 Attractively, 

our cost efficiency measures (including the corresponding LP characterization) can easily be adjusted 

to account for such incomplete price information. Consistent with usual practice in DEA, we use 

“most favorable” prices for evaluating the output-specific and joint inputs in the absence of exact 

price information: we adjust LP-1 so that it selects prices that maximize the efficiency of DMU t. In a 

certain sense, such most favorable prices may be interpreted as shadow prices that support cost 

efficient behavior of the evaluated DMU. Intuitively, (most favorable) shadow prices give each DMU t 

the “benefit of the doubt” in the efficiency evaluation exercise.10 

More formally, the use of shadow prices ˆ
t

p  and ˆ
t

P  for the inputs obtains the following LP 

problem (LP-2):

 

 

P p

P

p q Q

p q P Q

0, 1
ˆ ˆ,

1
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 
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



    

 







P ,

P

P

 

This LP problem has a readily similar interpretation as LP-1. The only difference is the 

normalization constraint (C-3) in LP-2. This constraint makes that we can give the objective function 

of LP-2 a similar ratio interpretation as the objective function of LP-1: because of (C-3) we have 

 ' '

1 1 1

ˆˆ/
M M Mm m m

t t t t t tm m m
c c

  
    p q PQ .11 

  

                                                           
9
 See, for example, Kuosmanen et al. (2006) for a discussion of instances where reliable price information is not readily 

available. Our application in Section 3 contains another example. 
10

 This idea of shadow pricing also underlies the so-called multiplier formulation of standard DEA models (see, for example, 
Cooper et al. 2000). Cherchye et al. (2007) provide a detailed discussion of the “benefit of the doubt”-interpretation of DEA 
models in the specific context of composite indicator construction. 
11

 In fact, in their original DEA paper Charnes et al. (1978) used a similar normalization constraint to convert their initial 
fractional programming problem into an equivalent linear programming problem. 
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To further clarify the link with more standard DEA analysis, we consider the dual formulation 

of LP-2. To define the dual problem, we let m

t
D

 
denote the set of DMUs that dominate DMU t in 

output m, i.e. { | }m m m

t s t
D s y y  . Further, let 

t
  represent the dual variable associated with 

constraint (C-3) and m

s
  the dual variable associated with the constraint (C-2) for each output m and 

DMU s. We can then formulate the dual problem as follows (LP-3): 

Q Q

q q

, 0

min

. .

(D-1) :  

(D-2) :

(D-3) : = 1

m
t s

m
t

m
t

m
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s s t t
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 



 
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

 







 

 









 

In this formulation, 
t
  measures the efficiency of DMU t as a proportional reduction of the 

inputs; the specificity of our efficiency measurement model is that it simultaneously accounts for  

joint inputs (see constraint (D-1)) and output-specific inputs (see constraint (D-2)). Similar to 

standard DEA models, the benchmark input vectors are constructed as (convex) combinations of 

existing DMUs, with every variable m

s
  representing the weight of each DMU s. In common DEA 

terminology, the variables m

s
  are referred to as intensity variables. We note that problem LP-3 

obtains separate benchmark (joint and output-specific) input vectors ( Q
m
t

m

s ss D


  and 

qm
t

m m

s ss D


 ) for every different output m. This feature relates to the particular nature of our 

approach, which explicitly recognizes that each different output is characterized by its own 

production technology (and, therefore, its own benchmark input). 

One final remark concerns the shadow price problem LP-2 and its dual formulation LP-3. The 

corresponding efficiency analysis can be strengthened by imposing price information in the form of 

additional constraints that define a feasible range for the relative prices; for example, such shadow 

price constraints may rule out the extreme cases where the relative price of a commodity 

approaches zero or infinity. The technical questions related to incorporating such shadow price 

restrictions have been discussed extensively in a DEA context, most commonly under the label 

‘weight restrictions’ or ‘assurance regions’ (see, for example, Allen et al.(1997) and Pedraja-Chaparro 
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et al.(1997), for surveys, and Kuosmanen et al. (2006) for more recent developments). 12 These tools 

are readily adapted to the current set-up. Typically, DEA shadow price restrictions are linear and, as 

such, they do not interfere with the linear nature of LP-2. As a specific illustration, we will use price 

restrictions in our  application. 

3.  APPLICATION 

 

3.1 Data 

 

Our empirical application uses data from a large service company active in a European 

country. It delivers its services to the end customer through 290 offices (i.e. DMUs) that are spread 

among the country. The offices only differ from each other in terms of their size, which is linked to 

the size and the population density of the geographical area they operate in. Further, all 290 offices 

can deliver the same 7 standardized outputs to the end customer, with the corresponding output 

targets exogenously given (i.e. DMU managers do not have control over the output quantities). As a 

result, the goal of each office is cost minimization for a given output, which complies with the cost-

oriented approach of our methodology. 

The company under investigation has its own ABC system, which is implemented at the office 

level. This implies that we have information about the inputs, resource drivers, costs of activities, 

activity drivers and outputs for each DMU. In consultation with the company management, we 

aggregated the variables in the original ABC model, resulting in a model with 7 inputs (i.e. cost 

categories), 7 activities and 7 outputs. Each DMU uses three types of inputs: labor, transport, and 

other overhead costs. More specifically, the model contains 3 categories of labor, 3 categories of 

transport, and 1 category of other overhead costs, which yields a total of 7 inputs. The labor and 

transport subcategories differ from each other in terms of their relationship with the activities. We 

treat them as distinct inputs because pooling heterogeneous cost categories can decrease the 

accuracy of the costing system (Labro and Vanhoucke 2007). Labor categories consist of the wages 

paid to different types of employees. Transport expenditures are fuel costs, maintenance costs and 

depreciation for different types of vehicles. Other overhead costs consist of all other expenditures 

made at the DMU level such as pay of the DMU manager, maintenance of the building,… For each 

DMU, we obtained expenditure data for every input. Specifically, we treat expenditures as aggregate 

input quantity indices (i.e. quantities multiplied by prices, with price differences correcting quality 

                                                           
12

 See, for example, Podinovski (2004) for a discussion on incorporating weight restrictions in (dual) DEA problems such as 
LP-3. 
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differences in the quantity composition). Due to confidentiality and strict Non-Disclosure 

Agreements, we cannot provide details on the activities, which cover the entire production process 

of the DMUs, and outputs of the ABC system.  

Panel A of Table 1 provides descriptive statistics for the 7 inputs. The large difference 

between the minimum and maximum values of the different inputs reflects a large variation across 

the 290 DMUs. We should also mention that some DMUs do not use some of the inputs 4, 5, 6 and 7. 

Based on the mean relative weights, we can conclude that inputs 1, 2 and 7 are most important. 

Panel B of Table 1 gives summary statistics for the activities. Activities 3 and 4 are the most input 

consuming activities. Panel C of Table 1 shows the summary statistics for the outputs. Output 1 is the 

most important output and takes an average share of 90,78%. The other outputs seem to be far less 

important. At this point, however, we note that it would be misleading to only consider this output in 

our efficiency analysis, as it is shrinking in volume year after year and the management is explicitly 

focusing its attention towards the other outputs. 

 

Insert Table 1 About Here 

We believe that this empirical application is well suited for demonstrating the practical 

usefulness of our newly developed efficiency measurement methodology: ABC data are available at 

the office level, all offices work in a standardized way, which makes them comparable (i.e. DMUs 

operate in a similar technological environment), offices are quite heterogeneous in terms of inputs 

used and outputs produced, and cost efficiency (i.e. cost minimization for given output targets) is an 

appropriate efficiency concept.  

 

3.2 Efficiency results 

Our empirical exercise considers four different efficiency measurement models: the first 

three models involve different specifications of the outputs-specific and joint inputs for calculating 

the (multi-output) cost efficiency measure presented in Section 2 (
t

CE ); the fourth model uses a 

standard cost efficiency measure (SCEt, which we define below) and will be used as a benchmark 

model. In each model we use shadow prices to evaluate the different inputs. In doing so, we employ 

shadow price restrictions to exclude unrealistic input prices; these restrictions have been specified in 

consultation with the company management. 
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Our first three models solve the problem LP-2 (complemented with linear shadow price 

restrictions) to compute 
t

CE  for each DMU t under different selections of the output-specific and 

joint inputs. The first model (BASIC) is our core model and considers 6 output-specific inputs (input 1-

6) and 1 joint input (input 7). We classified input 7 as a joint input as this input is a facility-level input 

(see Section 2.1). The company management is aware that the allocation of this input is somewhat 

‘artifical’ and agrees with the way in which we distinguish between output-specific inputs and joint 

inputs. The interpretation of this model is that the ABC system allows us to allocate 6 inputs directly 

to the outputs, while one input cannot be allocated to any specific output (and, thus, is ‘shared’ by 

the different outputs). In the second model (ALL_ALLOCATED), we use the original ABC system in 

which input 7 is also allocated to the outputs. By contrast, in our third model (NONE_ALLOCATED) we 

do not use any information provided by the ABC system and, thus, all inputs are treated as joint 

inputs. This model broadly coincides with the model of Cherchye et al. (2008).  

We believe that it is useful to compare our findings for these three models with a ‘standard’ 

cost efficiency measurement model, which does not consider jointly used inputs and/or inputs 

allocated to specific outputs. This benchmark model (BENCHMARK) is defined as follows for each 

DMU t:13 

SCEt = 
y y

p q P Q

p q P Q

' '

1' '

1

min
s t

M
mt

t t s t ssM
mm

t t t t
m

c
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      (8) 

Thus, for given prices 
t

p  and P
t

 this measure divides the minimal cost 
t

c  by the actual cost 

p q Q
' '

1
P

M m

t t t tm 
 ; the minimal cost is defined over all DMUs s that produce at least the same 

amount as DMU t of all different outputs (i.e. y y
s t
 ). The essential difference between the 

measure SCEt and our multi-output cost efficiency measure CEt is that this last measure accounts for 

(interdependent) output-specific production technologies; this complies with the fact that CEt is 

composed of output-specific cost efficiency measures m

t
CE  in (7). In turn, this implies that the newly 

proposed measure CEt generally has more discriminatory power than the standard measure SCEt 

(because CEt incorporates more prior information about the underlying production process). We will 

illustrate this last point in our empirical results. 

                                                           
13

 For simplicity, we define the standard cost efficiency measure without shadow prices. Including shadow prices proceeds 
analogously as before. See Cherchye and Vanden Abeele (2005) for a more detailed discussion of this cost efficiency 
measure. These authors also provide a linear programming formulation to compute the measure when using shadow prices 
for evaluating the inputs. As indicated above, we will use this shadow price formulation in our empirical exercise, in which 
we will include the same shadow price restrictions as for the other three efficiency measurement models. 
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For each of the four models, we consider two efficiency assessment exercises. In Section 

3.2.1, we present the efficiency results without controlling for exogenous variables that may have an 

impact on DMU efficiency and without correcting for possible outlier behavior of particular DMUs. 

Subsequently, Section 3.2.2 reports on a second exercise, in which we control for population density 

as a relevant exogenous variable and simultaneously account for the possibility of outlier behavior. 

Our selection of population density as the (sole) exogenous variable that is controlled for is the result 

of consultation with the company management. Next, explicitly accounting for outlier behavior 

should obtain efficiency results that are more robust (e.g. with respect to measurement errors for 

inputs and outputs, and non-comparability of DMUs due to (unobserved) heterogeneity of the 

production environment). In this second exercise, we make use of a probabilistic method that has 

recently been proposed in a DEA context and that is extensively discussed by Daraio and Simar 

(2007).14 This also shows that our new DEA-based methodology can be easily combined with this 

probabilistic method (as well as with other existing DEA methodologies).  

 

3.2.1 Without control for exogenous variables or outlier behavior 

 

Panel A of Table 2 reports the results for the four efficiency models without control for any 

exogenous variable and without correction for outlier behavior in the data. Considering the results 

for the BASIC-model, we find that only 10% of the DMUs are efficient and that the average cost 

reduction potential amounts to 20%. This last result implies that the average office can produce the 

same output with 20% fewer costs. The results for the BASIC-model also show that this model has 

considerable discriminatory power. This is an interesting property of our methodology, especially 

when taking into account the attractive structure of the model (with reasonable behavioral 

assumptions and minimal (unverifiable) production assumptions; see Section 2). In economic terms, 

our results suggest that, at the aggregate company level, the same output can be produced after 

reducing totals costs with 123.243.958 EUR. As yet another point of reference, such a cost decrease 

would imply an increase of the company’s EBIT (i.e. earnings before interest and tax) of as much as 

33%, ceteris paribus.  

The results for the ALL_ALLOCATED-model, which are qualitatively similar to the results for 

the BASIC-model, show that 14% of the DMUs are efficient and the average DMU can produce the 

same output with a cost reduction of 11%. The small differences between the results for the 

ALL_ALLOCATED- and BASIC-models should not be too surprising as the only difference between the 

                                                           
14

 The original ideas of this method were presented in Cazals et al. (2002) and Daraio and Simar (2005). 
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two models lies in the treatment of input 7, which accounts for only one sixth of the total costs (i.e. 

input 7 is considered as a joint input in the BASIC-model and an output-specific input in the 

ALL_ALLOCATED-model). However, the differences between both models are substantial enough to 

make clear that the classification of an input as joint or output-specific matters for the efficiency 

analysis and for the conclusions that are drawn from it. As for this particular application, we prefer to 

focus on the BASIC-model (and, thus, to treat input 7 as a joint input) as this model better reflects 

the particular environment of the company.   

Next, the empirical results for the NONE_ALLOCATED-model are consistent with our 

expectations. As this model puts very little prior structure by treating all inputs as joint inputs (i.e. no 

input is specifically allocated to the outputs), we may reasonably expect that the model will have low 

explanatory power. The results show that almost 90% of the DMUs is declared efficient and the 

average cost reduction potential is only 2%.  

Finally, we consider the results of the BENCHMARK-model, which uses the standard cost 

efficiency measure defined in (8). We find that this model has very low discriminatory power for the 

given data set: almost all DMUs are efficient. Comparing these findings with our results for the 

BASIC- and ALL_ALLOCATED-models provides a strong empirical argument pro using our newly 

proposed method: the explicit distinction between output-specific and joint inputs in the efficiency 

assessment does substantially contribute to the discriminatory power of the analysis. In turn, this 

also pleads for using detailed cost accounting data (generated by an ABC system), which effectively 

enables such a distinction.  

3.2.2 With control for population density and outlier behavior 

 

As mentioned earlier, we also computed efficiency results for the same four models when 

treating population density as an exogenous variable impacting DMU efficiency, and while 

accounting for outlier behavior. To this end, we combined our method with the probabilistic order-

alpha method of Daouia and Simar (2007). We refer to Daouia and Simar (2007) for a detailed 

treatment of the method, and restrict to sketching the main idea. The probabilistic method starts by 

estimating a nonparametric kernel density function through the values of the exogeneous variable Z 

(in our case population density), using a bandwidth h that is determined by cross-validation 

techniques. Then, it restricts the set of potential comparison partners for each DMU t (with value Zt 

for the exogenous variable) to those DMUs of which the corresponding Z value lies within the range 

[Zt – h, Zt + h]; as a result, DMU t will only be compared to other DMUs that have a Z value close to 
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Zt.
15 Specifically, the method repeatedly draws random subsamples (with replacement) from this 

restricted set of potential comparison partners. For each draw it computes DMU t’s cost efficiency, 

defining a subsample-specific efficiency value. The outlier-robust efficiency measure is then 

calculated as the average (over all draws) subsample-specific efficiency values. The following 

efficiency results pertain to this robust measure (for all four efficiency measurement models under 

consideration).16 

Panel B of Table 2 summarizes our findings. A first observation is that the average efficiency 

value and the number of efficient DMUs for the BASIC-model are substantially higher than the 

corresponding values in Panel A of the same table (i.e. without control for population density and 

outlier behavior). This suggests that differences in population density as well as outlier behavior may 

have an important influence on the efficiency results. However, even if we control for these factors, 

our BASIC- model still has a lot of discriminatory power. Specifically, 66,55% of the DMUs are 

identified as cost inefficient and the mean cost reduction potential still amounts to 6%. The economic 

impact of this result is still significant: at the aggregate company level, a potential cost reduction of 

36.973.187 EUR could be realized without decreasing the output level. Such a cost reduction would 

increase the EBIT with 10%, ceteris paribus.  

Next, we find that the discriminatory power also decreased for the ALL_ALLOCATED- and 

NONE_ALLOCATED-models compared to the same models without control for population density and 

outlier behavior. Generally, the results for these models yields the same qualitative conclusions as 

before. First, we observe some differences between the results for the ALL_ALLOCATED- and BASIC- 

models, which indicates that treating input 7 as a joint input matters for the analysis. Second, we 

observe that the discriminatory power of the NONE_ALLOCATED-model is very low, which again 

shows that using information about the allocation of the output-specific inputs may substantially 

enhance the efficiency analysis. 

Finally, the BENCHMARK-model with a control for population density loses all discriminatory 

power. If one were to use this method only, it would seem as all offices are operating efficiently. 

Once again, this result provides a strong empirical argument for using our newly developed efficiency 

measurement method. 

                                                           
15

 To be precise, to compute CEt, the original set of comparison partners for each output m (with corresponding 
m

t
CE in 

(7)) is the set of DMUs s such that 
m m

s t
y y . Similarly, the original set of comparison partners to compute SCEt is the sets 

of DMUs s such that y y
s t
  (see (8)). The restricted sets of comparison partners contain those DMUs s that additionally 

satisfy the requirement that Zs lies within [Zt – h, Zt + h]. 
16

 In our exercise, we conducted 200 random draws for calculating these robust measures. In each draw, the number of 
observations in the subsample equaled 80% of the number of observations in the restricted set of potential comparison 
partners (where we round to the first higher integer if necessary). 
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3.3 Managerial Implications 

 

Companies often have multiple business units or offices (i.e. DMUs) that produce identical 

outputs. A major task of top management is to monitor the efficiency of these DMUs in converting 

inputs into outputs, and to take appropriate decisions based on the efficiency assessment. Examples 

of such decisions are evaluation of business unit managers and the linked bonus payments, the 

installment of benchmarking programs and initiation of improvement actions for bad performing 

business units, and potentially  the dismissal of business unit managers or closing of bad performing 

business units. 

However, accurate efficiency assessment is a complex task for several reasons. First,  

production processes with multiple outputs are typically characterized by inputs that can be directly 

allocated to the specific outputs (output-specific inputs) as well as inputs that simultaneously assist 

in the production of different outputs (joint inputs). The labor cost of employees of a department of 

a typical supermarket store, for instance, can be directly attributed to the products of that 

department. The salary of the store manager, however, cannot be attributed to a product or product 

group. The existence of joint inputs thus necessitates the use of a method that allocates the joint 

inputs to the multiple outputs in a way that does not bias the efficiency assessment at the 

disadvantage of the business unit. Second, business units do not produce the same output mix. Third, 

even standardized business units operate in different environments. They are subject to different 

environmental (i.e., exogenous) factors that are beyond their control but influence their efficiency 

(e.g. population density, average household income,...). As business units should only be held 

accountable for their inefficiency resulting from controllable factors, and not for the influence of the 

environment they operate in, a refined methodology is necessary. 

We believe that our newly developed methodology has some unique benefits that can 

improve efficiency assessments of business units and, as a consequence, firm performance. A first 

benefit is that including information about the allocation of the output-specific inputs to the 

different outputs substantially improves the discriminatory power of the efficiency assessment. 

Evidently, an efficiency measurement methodology with more discriminatory power has a greater 

managerial relevance, as DMU-managers can only be motivated to initiate improvement actions if 

their DMU is identified as inefficient by the efficiency assessment. Furthermore, by treating some 

inputs as joint inputs and by allocating these inputs to the outputs in a way that does not harm the 

efficiency result of the particular business unit, our methodology calculates efficiency in a 

conservative way and takes into account the particular features of the production process. Finally, 

our methodology can be easily combined with well-known extensions of DEA-based efficiency 
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assessments (e.g. to control for exogenous factors and outlier behavior) so that the benefits of these 

extensions also pertain to our methodology. Taken together, assessing the efficiency of DMUs by 

means of our methodology will make the results of  the efficiency assessment more acceptable for 

business unit managers, lead to more improvement actions and, consequently, higher realized cost 

reductions and improved firm performance. 

A second interesting feature of our methodology is that it allows us to decompose the overall 

efficiency value of a DMU in output-specific efficiency values and corresponding weights (revealing 

the importance of each individual output in the overall efficiency value; see our discussion of (7) in 

Section 2). Such a decomposition can lead to more focused improvement actions compared to 

approaches that do not decompose the overall efficiency value. Indeed, without a decomposition of 

the overall efficiency value, managers of multi-output DMUs have no clear guidance in terms of the 

outputs on which they should focus in order to correct the inefficiency that is detected. Taken 

together, the main distinguishing features of our methodology pertain to the identification of 

inefficient DMUs and to the fact that it provides managers with more guidance for the installment of 

improvement actions.  

To show the practical usefulness of the decomposition of the overall efficiency value of a 

DMU, we provide a specific example taken from our application. Panel C of Table 2 reports the 

output-specific efficiencies and the output weights for three DMUs (A, B and C) that attain the same 

overall efficiency score (i.e. 0,65). The level of the overall efficiency value indicates that each DMU 

can produce the same combination of outputs with a cost level that is 35% below the current cost 

level. While standard methods for efficiency assessment, which typically do not decompose the 

overall efficiency measure, would stop here, our methodology allows us to go further by analyzing 

the sources of this cost inefficiencies at the individual output level. 

Careful inspection of the output-specific efficiencies reveals some notable differences across 

the three DMUs. Output 1, for instance, is produced efficiently in DMU B, while DMUs A and C turn 

out to be inefficient in the production of this output. Considering the weights for output 1 shows that 

this output is more important for DMU A (i.e. a weight of 0,51) than for DMU B and C (i.e. a weight of 

respectively 0,11 and 0,06). Summarizing, this example shows that output-specific efficiencies and 

the corresponding weights can vary a lot between DMUs, which emphasizes the importance of 

providing this information to managers in order to help them to increase the efficiency of their 

DMUs.   

When considering the other outputs of the DMUs in more detail, we find that the focus of 

the improvement actions may substantially vary across DMUs. For example, DMU B is performing 

quite well for outputs 4 and 5 (with output 4 much more important than output 5). By contrast, its 
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cost efficiency is much lower for output 3, which is almost as important as output 4. However, the 

most problematic is output 6, which is only slightly less important than output 3, but has dramatically 

low efficiency. We also note that the efficiency of outputs 2 and 7 is low, but these outputs are only 

marginally important for the cost efficiency of DMU B. Taken together, our advice for DMU B is to 

focus mainly on the production of output 6 and, to a somewhat lesser extent, output 3.  

A similar analysis for DMUs A and C yields the following conclusions. First, DMU A can 

improve its overall efficiency by focusing on output 1, which is very important and is characterized by 

a potential cost reduction of 14%. In addition, this DMU can fruitfully focus on a more efficient 

production of outputs 2 and 3, which are a bit less important but characterized by much more room 

for improvement than output 1. Finally, DMU C should in particular concentrate on output 6, which is 

both highly important and produced quite inefficiently. 

 

Insert Table 2 About Here  
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4. CONCLUSION 

 

Companies often have multiple business units in which the same outputs are produced. Well-

known examples of such companies are Wal-Mart, Home Depot and Mc Donald’s. An assessment of 

the efficiency of the different business units is necessary to manage such companies in an adequate 

way. This study develops a new DEA-based methodology that improves the efficiency measurement 

of multi-output DMUs and provides guidance for the improvement actions to restore inefficiency. 

The distinguishing feature of our methodology is that we include information about the 

decomposition of the inputs to the outputs. Interestingly, companies often have such information 

available in their ABC systems. 

This new approach to efficiency measurement enriches the production efficiency analysis in 

two different ways. First, including information about the input decomposition substantially 

improves the discriminatory power of the efficiency assessment. Specifically, our new methodology 

is better able to detect productive inefficiencies, which should lead to more improvement actions 

and higher realized cost savings. A second interesting contribution of our method is that it allows for 

decomposing the overall efficiency in output-specific efficiencies. Overall cost efficiency measures 

indicate how well a particular DMU performs in the aggregate, but it does not generate any direct 

guidance as to which actions can effectively improve the observed inefficiencies. By contrast, output-

specific efficiency measures effectively identify the outputs on which DMUs should focus to remedy 

the observed inefficiency. Given that business units typically have limited resources to remedy 

inefficiencies, our methodology helps to better allocate these scarce resources to the outputs that 

contribute the most to the inefficiency that is observed. Summarizing, our methodology will lead to 

more improvement actions as well as more focused improvement actions. 

This study also contributes to the literature on costing systems: our empirical application 

shows that our methodology is naturally complementary to ABC systems, and that ABC information 

can be particularly useful for assessing the efficiency of business units. We believe that this potential 

of using ABC data for efficiency assessment can be an important decision criterion to invest in such 

costing systems. 

We see multiple avenues for follow-up research. First, as for empirical applications, we have 

suggested using ABC data to obtain information about the decomposition of the output-specific 

inputs to the different outputs. Although ABC is a more accurate costing method than volume-based 

costing methods, it is unlikely to be error-free. Furthermore, previous research has shown that the 

accuracy of ABC systems depends the characteristics of the economic environment, such as diversity 

in the resource consumption patterns (Labro and Vanhoucke 2007). Future research could 
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investigate how the determinants of the accuracy of costing systems influence the accuracy of the 

efficiency assessments. 

Next, at a methodological level, our approach allows for a richer type of efficiency analysis, 

because it explicitly recognizes that different outputs are characterized by own (possibly 

interdependent) production technologies. In this respect, the current study has focused on Pareto-

Koopmans efficient output production, because this is the most popular efficiency criterion in the 

existing literature. However, one may also assume a Nash equilibrium allocation for multi-output 

production (which need not necessarily be Pareto-Koopmans efficient). Here, one may fruitfully build 

on Cherchye et al. (2011), who considered this Nash equilibrium criterion in a formally close 

consumption setting. More generally, we believe that our modeling of output-specific production 

technologies opens the way for a whole new spectrum of applications of multi-output efficiency 

analysis. 
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Appendix: Proof of Proposition 1 

As a first step, we use a standard result in welfare economics, namely: under convex utility possibility 

sets, any Pareto-efficient allocation can be characterized as a stationary point of a linear social 

welfare function (see, for example, Mas-Colell, Whinston and Green (1995)). This result is readily 

translated towards the current setting, which is characterized by convex output producible sets 

(instead of utility possibility sets). Specifically, we obtain the following equivalence (Result 1):  

For a given vector of production functions 1( ,..., , )Mf q q Q , with producible output set 

 p P, ,
t t t

P z : 

yt is Pareto-Koopmans output efficient 

  

there exists μ M

t 
 :  μ μy y   y p P

' ' , ,
t t t t t t

for all P z  . 

As a second step , we can use the following equivalence (Result 2): 

For a data set S: 

there exists 1( ,..., , )Mf q q Q , with producible output set  p P, ,
t t t

P z , 

such that for each DMU t there exists μ M

t 
 : 

 μ μy y   y p P
' ' , ,
t t t t t t

for all P z  . 

  

for each DMU t, there exist implicit prices  

such that for each output m: if for some DMU s  

m m

s t
y y , then    

' '
' 'm m m m

t t t t t s t s
  p q Q p q QP P . 

The proof of this second equivalence is directly analogous to the one of Proposition 1 in Cherchye, De 

Rock and Vermeulen (2008). For compactness, we do not repeat it here. See also Chiappori (1988) 

and Cherchye, De Rock and Vermeulen (2007, 2011) for formally similar results in a consumption 

context. 

Combining Results 1 and 2, and using Definitions 2 and 4, we get the wanted result: 

The data set S is Pareto-Koopmans output efficient  

if only if it is multi-output cost efficient. 
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FIGURE 1: 

ABC model 
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TABLE 1: 

Summary statistics for input, activities, and outputs 

PANEL A: SUMMARY STATISTICS FOR INPUTS 

 Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 

Minimum 2.300,53 6.522,28 2.402,56 0,00 0,00 0,00 0,00 

1st Quartile 416.512,75 178.020,86 27.060,68 16.722,70 861,31 99,13 8.224,88 

Median 681.166,76 346.869,95 50.897,87 38.132,60 3.913,21 965,87 18.776,13 

3rd Quartile 1.235.242,32 641.469,51 96.741,76 69.255,21 10.609,42 5.327,23 84.246,26 

Maximum 7.852.652,61 3.106.230,5 807.476,34 512.198,29 50.478,14 555.005,36 5.836.885,8 

Mean 1.083.253,08 511.329,46 88.798,65 57.454,91 7.351,60 29.023,07 347.685,06 

Stddev 1.256.051,39 493.970,15 113.984,00 68.758,95 9.163,86 76.749,02 873.538,76 

Mean Relative 
Weight 

0,51 0,24 0,04 0,03 0,00 0,01 0,16 

PANEL B: SUMMARY STATISTICS FOR ACTIVITIES 

 Activity 1 Activity 2 Activity 3 Activity 4 Activity 5 Activity 6 Activity 7 

Minimum 50.715,01 16.633,58 109.033,49 83.422,97 57.595,20 660,08 28.828,71 

1st Quartile 134.417,95 44.086,60 272.126,91 221.109,00 152.653,60 1.749,52 76.409,25 

Median 208.236,47 68.297,70 432.590,15 342.535,79 236.486,62 2.710,31 118.371,04 

3rd Quartile 365.520,84 119.884,06 763.735,28 601.258,59 415.108,78 4.757,45 207.778,59 

Maximum 1.646.721,96 540.094,28 3.239.597,01 2.708.753,15 1.870.122,49 21.432,96 936.071,30 

Mean 314.939,21 103.294,23 647.817,50 518.055,03 357.665,06 4.099,10 179.025,71 

Stddev 298.032,42 97.749,11 601.898,45 490.244,43 338.464,63 3.879,05 169.415,12 

Mean Relative 
Weight 

0,15 0,05 0,30 0,24 0,17 0,00 0,08 

PANEL C: SUMMARY STATISTICS FOR OUTPUTS 

 Output 1 Output 2 Output 3 Output 4 Output 5 Output 6 Output 7 

Minimum 5.647,86 0,00 0,00 11,97 2,06 33,25 2,68 

1st Quartile 17.351,95 0,00 65,75 67,88 7,20 117,18 140,65 

Median 28.991,22 0,00 1.501,44 99,32 13,69 206,15 240,37 

3rd Quartile 48.648,71 0,00 3.240,62 159,19 23,09 369,07 458,22 

Maximum 167.844,62 70,00 28.251,79 837,27 78,42 5.515,25 4.171,21 

Mean 37.935,31 0,93 2.859,37 134,84 18,22 382,28 456,77 

Stddev 30.129,41 5,28 4.540,18 108,95 14,95 574,87 644,00 

Mean Relative 
Weight 

0,91 0,00 0,07 0,00 0,00 0,01 0,01 
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TABLE 2: 

Efficiency results 

PANEL A: EFFICIENCY RESULTS WITHOUT CONTROL FOR POPULATION DENSITY AND OUTLIER BEHAVIOR 

Efficiency measure BASIC ALL_ALLOCATED NONE_ALLOCATED BENCHMARK 

Minimum 0,23 0,30 0,52 0,61 

1st Quartile 0,68 0,86 1,00 1,00 

Median 0,83 0,92 1,00 1,00 

3rd Quartile 0,96 0,97 1,00 1,00 

Maximum 1,00 1,00 1,00 1,00 

Mean 0,80 0,89 0,98 1,00 

Stdev 0,18 0,12 0,07 0,03 

Efficient DMUs     

Number 29 40 259 285 

Percentage 10,00% 13,79% 89,31% 98,28% 

PANEL B: EFFICIENCY RESULTS WITH CONTROL FOR POPULATION DENSITY AND OUTLIER BEHAVIOR 

Efficiency measure BASIC ALL_ALLOCATED NONE_ALLOCATED BENCHMARK POP.DENSITY 

Minimum 0,43 0,42 0,59 1,00 5,2 

1st Quartile 0,92 0,88 1,00 1,00 16,5 

Median 0,98 0,93 1,00 1,00 22,2 

3rd Quartile 1,00 0,97 1,00 1,00 34,2 

Maximum 1,00 1,00 1,00 1,00 253,5 

Mean 0,94 0,91 0,99 1,00 33,9 

Stdev 0,10 0,10 0,05 0 38,9 

Efficient DMUs      

Number 97 47 270 290 - 

Percentage 33,45% 16,21% 93,10% 100% - 

PANEL C: DECOMPOSITION OF OVERALL EFFICIENCY FOR THREE DMUS (weights between brackets) 

 Overall Output1 Output2 Output3 Output4 Output5 Output6 Output7 

A 0,65 0,86 

(0,51) 

0,25 

(0,16) 

0,56 

(0,17) 

0,87 

(0,07) 

0,22 

(0,06) 

0,00 

(0,02) 

0,10 

(0,01) 

B 0,65 1,00 

(0,11) 

0,21 

(0,02) 

0,69 

(0,23) 

0,94 

(0,29) 

0,99 

(0,10) 

0,01 

(0,21) 

0,01 

(0,04) 

C 0,65 0,89 

(0,06) 

0,40 

(0,05) 

0,50 

(0,09) 

0,53 

(0,09) 

0,84 

(0,04) 

0,67 

(0,67) 

1 

(0,00) 

 


